Effect of Foliar Spray of Boron and Zinc on the Yield and Yield Components of Spring Safflower (Carthamus tinctorius L.) under Late-Season Water Limitation
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
The stable nature of plants constantly makes them to expose to a variety of environmental conditions that are often stressful and undesirable. Drought or water deficit stress is the most important environmental factor which has severe negative impacts on crops yield, especially when the water deficit stress occurs in the flowering stage, it will affect the crop production. The nutritional imbalance in plants is one of the effects of drought stress. Proper plants nutrition under stress conditions may partially help plants against various stresses. The growth and yield of plants under stress conditions can be improved by spraying foliar micro nutrients. Boron is essential for protein synthesis, seed and cell wall formation, pollen germination and pollen tube growth. Zinc application has a significant impact on basic plant processes such as metabolism and nitrogen uptake, improving the quality of protein structure, photosynthesis, resistance to biotic and abiotic stresses in plants and their protection against oxidative damage. The aim of this study was to investigate the effects of foliar spray of boron and zinc on yield and yield components of spring safflower (cv. Mahalli-e Esfahan) under late-season water deficit in Ardabil province.
Materials and Methods
The field experiment was conducted at the Research Farm of the University of Mohaghegh Ardabili, Ardabil, Iran in 2014 and 2015. The experimental arrangement was split factorial based on a randomized complete block design with three replications. The main-plot factor consisted of three levels of water treatments (S1: full irrigation until end of season, S2: without irrigation in flowering, S3: without irrigation in seed filling) and the sub-plot factor included factorial combination of Boron (B1: 0, B2: 350, B3: 700 ppm) and Zinc (Z1: 0, Z2: 1000, Z3: 2000 ppm). B was added as Boric Acid (H3BO3) and Zn as Zinc Sulfate (ZnSO4). The treatments were applied during anthesis (when 50% of the plants were at anthesis stage) as foliar applications (Dordas et al., 2007). All other agricultural practices (weeds control and irrigation), were performed when they were required and as recommended for safflower production. The measured traits included plant height, fertile and infertile capitoles per plant, grain number per capitole and plant, unfilled grain percentage, 1000-kernel weight, grain yield, biological yield and harvest index. Analyses of variance and comparison of means at P≤0.05 were carried out, using SAS 9.1 software. The means were compared using LSD test.
Results and Discussion
Combined analysis of variance of the data showed that year was significant for all the traits (except infertile capitoles per plant). During the second year, there was no significant difference among all the treatments due to heavy rainfalls. The results of the mean comparison of data showed that all parameters were superior in the second year compared to the first year. Also Seed number per plant, 1000-kernel weight, seed yield and biological yield were significantly affected by drought stress. The results demonstrated that water deficit stress at flowering and seed filling stages significantly decreased grain yield compared to full irrigation (7.94% at flowering and 8.25% at seed filling). The interaction effect of Boron×Zinc was significant in all considered characteristics (except plant height and biological yield). The treatments of B3Z2, B2Zn2 and B1Zn3 had the greatest increase of these parameters in comparison with B1Z1 (control). The treatment of B3Z2 had the greatest increase (47.66%) of grain yield in comparison with B1Z1 (control). Under stress conditions during flowering and grain filling stages, number of infertile capitoles per plant, 1000-grain weight and grain hollowness were considerably improved through micronutrients foliar application. Boron and Zinc foliar application significantly improved most traits under water stress levels.
Acknowledgments
We would like to thank from the Faculty of Agriculture, Mohaghegh Ardabili University, for supporting this study.
Language:
Persian
Published:
Agroecology journal, Volume:10 Issue: 3, 2018
Pages:
823 to 840
magiran.com/p1930788  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 50 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!