Optimization of Composite Stiffened Cylindrical Shell using PSO Algorithm
Composite stiffened cylindrical shells are widely used as primary elements in aerospace structures. In the recent years, there has been a growing research interest in optimum design of composite stiffened cylindrical shell structures for stability under buckling load. This paper focuses upon the development of an efficient optimization of ring-stringer stiffened cylindrical shell. The optimization problem used in this study involves weight minimization of ring-stringer stiffened composite cylindrical shell with buckling load and stress, which are considered as design constraints. The proposed methodology is based on Particle Swarm Optimization (PSO) algorithm. The material of shell is composite, but the material of stiffeners is considered to be isotropic. The approach adopted in modeling utilizes the Rayleigh-Ritz energy method and the stiffeners are treated as discrete members. In addition, a 3-D Finite Element (FEM) model of the ring-stringer stiffened cylindrical shell is developed that takes into consideration the exact geometric configuration. The results obtained using the Rayleigh-Ritz energy method are compared with those using 3-D FE model. The proposed methodology is implemented on the ring-stringer stiffened cylindrical shell using the PSO algorithm. The obtained results show a 13% reduction in the weight of the ring-stringer stiffened cylindrical shell whilst all the design constraints are satisfied. In addition, the results show that the proposed methodology provides an effective way of solving composite stiffened cylindrical shell design problems.
Journal of Aerospace Science and Technology, Volume:11 Issue:2, 2017
43 - 51
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!