Comparison of wavelet-MLP and wavelet-GMDH models in forecasting EC and SAR at Zayandeh-Rood River

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Increasing water demand and water pollution due to the development of agricultural, urban and industrial activities have caused environmental problems all over the world. The significant increase in water pollution and the diversity of various urban, agricultural and industrial pollutants made the qualitative management of water resources inevitable. Short-term and long-term accurate forecasts of river quality parameters are essential for designing hydraulic structures, irrigation planning, optimal utilization of reservoirs and environmental planning. Given the stochastic characteristics of the hydrological events, forecasting the future status of surface waters is always associated with uncertainties. The purpose of the present study was to investigate the performance of two types of artificial neural networks, namely MLP and GMDH, combined with discrete wavelet transform (DWT), to forecast two important quality parameters, electrical conductivity (EC) and sodium adsorption ratio (SAR) at Zayandeh-Rood River in 1, 2 and 3 months ahead. Material and
methods
In this study, water quality data (EC and SAR) of Zayandeh-Rood River at Zaman Khan Station was used from 1363 to 1384. From 21 years of data, 15 years (approximately 70%) were used for training and 7 years (30%) were used to test the developed models. Two types of mother wavelet dmey and db4 were evaluated. Statistical parameters such as RMSE and R2 were used to evaluate the performance of the models.
Results and discussion
The results showed that the use of discrete wavelet transform improves the performance of the models. Various combinations of input data (various delays) and two types of mother wavelets were evaluated. The results showed that wavelet-MLP and wavelet-GMDH hybrid models outperform single MLP and single GMDH models at all forecasting intervals. The results of the single MLP and GMDH models were only effective in forecasting SAR one month ahead but practically could not forecast two and three months later. In the EC parameter, the MLP and GMDH models performed better. Also, the results showed that the use of annual time lags does not increase the accuracy and in some cases even reduces it. The study of the types of mother wavelets also showed that the dmey wavelet is the most suitable wavelet type to forecast EC and SAR qualitative parameters. The comparison between wavelet-MLP and wavelet-GMDH models showed the relative superiority of the former model. By increasing the forecast period from one month to three months ahead, the accuracy of the models decreased. This decrease in precision was higher in forecasting SAR parameter, e.g. in the one month forecast, R2 was 0.936 and in the 3 months ahead forecasts it was reduced to 0.516. In the EC parameter, the R2 fell to 0.641 in 3 months ahead forecasting.
Conclusion
The results of this study can be used as a basis for future planning for water quality. It is suggested that the model presented in this study should be considered in other rivers. Also, the combination of other artificial intelligent models such as ANFIS and SVM with wavelet transform can be evaluated.
Language:
Persian
Published:
Environmental Sciences, Volume:16 Issue: 4, 2019
Pages:
135 to 152
magiran.com/p1940146  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!