Correlation between Different Fe Forms and Magnetic Susceptibility with the Development of Some Ramhormoz’s Soils, Khuzestan Province, Iran

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
The Fe forms diversity is related to parent materials, climate, soil process, biocycles, water table fluctuation, redox, organic matter and etc. in soil. The main Fe forms are Fed (extracted by dithionite citrate bicarbonate), Feo (extracted by oxalate ammonium) and Fe crystals. Feo/ Fed ratio also shows active Fe forms. Magnetic susceptibility (MS) increases when ferri-magnetite is formed due to soil processes. This characteristic (MS) changes with parent material, climate, relief, and organism. Therefore, this study was undertaken to evaluate different Fe forms and MS with soil forming factors in some gypsic soils of Khuzestan province.
Material and Methods
The study area was located in Ramhormoz and Haft-Kel regions in Khuzestan province. Soil moisture and temperature regimes were ustic and hypertermic, respectively. Soil parent material consisted of the eluvial deposit of Gachsaran and Aghajari geological formations. The soil profiles location was selected according to topography map, ETM+ Landsat satellite images, and then 14 soil pedons were dug and described according to the standard methods. All horizons or layers were sampled and 5 pedons were selected for the analysis of different Fe forms. Fed and Feowere, respectively, extracted by citrate-bicarbonate-dithionite (CBD) and oxalate ammonium, and Fe cocentration was then determined by atomic absorption spectrometry. Furthermore, MS was determined by MS2 meter Barlington Dual frequency in low (0.46 kHz) and high (4.6 kHz) frequencies. All MS were calculated for carbonates, gypsum, and OM free. These calculations were also done for Fe forms in these samples. The statistical analysis was carried out with SPSS and Pierson methods between Fe forms and MS. The Duncan’s test was used to compare the mean values.
Results and Discussion
Pedons were classified as Entisols, Inceptisols, and Aridisols soil orders. The range of clay content, pHe, ECe, CEC, OM, CCE and gypsum was 15-59%, 7.1-8.5, 0.6-58.1 dS/m, 4.2-22.4 cmol(c)/kg, 0.3-2.4%, 21.2-39.7%, and 0-78.7%, respectively. All epipedons were classified to be ochric and developed soils had cambic diagnostic horizon (Bw) in subsurface. Feo content was maximum in young soil under poor drainage, and minimum Feo content was observed for developed pedons with good drainage class. The sepedons have not been cultivated yet. Feo was maximum at surface soils in all pedons, and decreased with increasing depth. A decreasing trend was observed from surface to subsurface for Fe content in cultivated soils. This negative trend was not, however, detected in poor drainage class or pedons with lithologic discontinuity. This trend can be ascribedto more organic matter content in surface soil in comparison with subsurface soil. Organic matters increase soil acidity and therefore, Feo can not be converted to other Fe forms under this circumstance. Maximum Feo was determined under poor drainage class in low lands. In addition, Fed displayed no trend from the surface to depth at most pedons. Maximum Fed was foundin old plain and the hill slope summit. This Fed was positively strongly correlated with soil development trend. Fed had a positive association with clay content (r=0.463), and negative correlation with sand content (r= -0.411), salinity (r= -0.533), and total carbonate, gypsum and OM (r= - 0.389). Feom (Feo menerogic) was maximum in Byz (4.04 gr/kg soil) and minimum content for Feomwas found in Byb (0.29 gr/kg soil). Maximum andminimum Fedmwas measured in Cy (9.21 g/kg) and Bg2 (1.54 g/kg), respectively. The Feo/ Fed ratio was largerin young soil and decreased with time. These values decreased from the surface to depth with the range from 0.07 to 0.8. The greatest and lowest Feo/ Fedwere, respectively, observed inthe hills and the low lands. There was no significant difference in Feo/ Fed between hill and plain. MS changed from 5 to 25.5. Maximum and minimum MS was detected in the hills and the low lands. MS decreased with depth in almost all horizons. The highest and lowestMS were, respectively, found in pedon 3 (Byb horizon) and pedon 12 in the Bw3 horizon. The MS minerogenicwas statistically significantly associated to sand content (r=0.56**) and significantly negatively correlated with total carbonates, gypsum, OM (r=-0.667**), silt content (r= -0.506) and clay content (r= -0.456). The positive relationship between sand content and MS can be explained by the effect of magnetic materials inherited from the parent materials.
Conclusion
Fed and Feo- Fed showed a close correlation with soil development. Feo/Fed ratio increased with decreasing soil age. Feo content had a positive correlation with total carbonate, OM, salinity. MS was more in older soils such as hill physiographic unit but it was low in younger soils or soils with weak drainage. MS was greatly affected by sand material size which seems to be linked to parent materials. MS showed no trend with soil development but land use, drainage and parent material largely impacted MS and different Fe forms in these gypsiferous soils.
Language:
Persian
Published:
Journal of water and soil, Volume:32 Issue: 6, 2019
Pages:
1149 to 1164
magiran.com/p1944826  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!