Breast Cancer Prediction Using the Affinity Propagation Clustering with Regard to the Weights of Variables

Article Type:
Research/Original Article (بدون رتبه معتبر)
By using data mining tools in the field of medical diagnosis, some limitations such as the high cost of some tests or their timing will be addressed. In addition, the existence of errors in some experiments has led researchers to be welcomed by categorization methods. In this regard, the present study, based on the combination of clustering and categorization methods, has proposed a new method for the diagnosis of breast cancer. In this operation, the combination is performed using an iterative algorithm and a dependency propagation clustering algorithm. This method produces weights for variables using an innovative algorithm and forms cluster clusters based on the dependency propagation algorithm. Then the number of clusters as a new variable is added to the data, and in the next step, the block algorithm is implemented on the modified dataset containing the main data and the number of clusters. According to the accuracy index, the weights production continues to reach the highest possible precision. According to the numerical experiments conducted in this study, the combination of the dependency emission clustering algorithm with an average accuracy of 36.98 was the most accurate. In addition, the Wilcoxon assumption test confirmed the superiority of the combined neural network compared to other methods.
Engineering Management and Soft Computing, Volume:4 Issue: 2, 2019
27 to 39  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!