Portfolio Optimization with CVaR under VG Process
Formal portfolio optimization methodologies describe the dynamics of financial instruments price with Gaussian Copula (GC). Regardless of the skewness and kurtosis of assets return rate, optimization with GC underestimates the optimal CVaR of portfolio. In the present paper, we develop an approach to portfolio optimization by introducing Lévy processes. It focuses on describing the dynamics of assets’ log price with Variance Gamma copula (VGC) rather than GC. Doing a case study on three Indexes of Iran Stock Market, the best hedge positions of Total Index, Market Index and Industry Index with the performance function CVaR under VG model were calculated. The results indicate that (a) VG copula can efficiently overcome the shortcomings of Gaussian copula which underestimates the CVaR of portfolio; (b) optimal portfolio, VaR and CVaR keep stable each time one parameter of sample’s skewness or kurtosis was changed, but the optimal portfolio change significantly when the sample’s mean increases or decreases; (c) different copula lead to different optimal CVaR; and (d) fat-tailedness and kurtosis are extremely important in portfolio optimization framework.
Article Type:
Research/Original Article
Financial Knowledge of Securities Analysis, Volume:12 Issue:41, 2019
101 - 112
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!