Spatial Variability of Soil Saturated Hydraulic Conductivity and Penetration Resistance in Salt-Affected Lands around Lake Urmia

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Over the last few years, due to the depletion of Lake Urmia located in the northwest of Iran, the proportion of surrounding saline agricultural lands increased at a fast pace. Digital mapping of regional soils affected by salt is essential when monitoring the dynamics of soil salts and planning land development and reclamation schemes. The soil hydraulic and mechanical parameters are very important factors that affect water and chemical transport in soil pores. In the salt-affected soils, saturated hydraulic conductivity (Ks) is very low due to the high contents of sodium and weak aggregate stability. Penetration resistance (PR) indicates soil mechanical strength to penetration of a cone or flat penetrometer; it is important in seedling, root growth and tillage operations. Generally, PR values exceed 2.5 MPa, while root elongation is significantly restricted. The analysis of spatial variability of Ks and PR is essential to implement a site-specific soil management especially in the salt-affected lands. The objective of this study was to evaluate the influence of two different bare and agricultural land uses on the spatial variability of Ks and PR in the salt-affected soils around Lake Urmia.  
Materials and Methods
This study was conducted in the agricultural and bare lands of Shend Abad region located at the 15 km of Shabestar city, northwest of Iran (45° 36ʹ 34ʺ to 45° 36ʹ 38ʺ E and 38° 6ʹ 37ʺ to 38° 7ʹ 42ʺ N). Totally, 100 geo-referenced samples were taken from 0-10 cm soil depth with 100×100 m intervals (80 ha) in agricultural (n=49) and bare (n=51) land uses. Sand, silt, clay, organic carbon (OC), mean weight diameter of aggregates (MWD), sodium adsorption ratio (SAR) and electrical conductivity (EC), were measured in the collected soil samples. The EC and SAR were measured in 1:2.5 (soil: distilled water) extract. Ks was measured using constant or falling head method. Bulk density (BD) and field water content (FWC) were measured in the undisturbed soil samples taken by steal cylinders with 5 cm diameter and height. Total porosity calculated from BD and particle density (PD). PR was directly measured at the field using a cone penetrometer. The best fit semivariograms model (Gaussian, spherical and exponential) was chosen by considering the minimum residual sum of square (RSS) and maximum coefficient of determination (R2). Ordinary Kriging (OK) and inverse distance weighting (IDW) interpolation methods were used to analyze the spatial variability of Ks and PR. Spatial distribution maps of soil variables were provided by Arc GIS software. The accuracy of OK and IDW methods in estimating Ks and PR was evaluated by mean error (ME), mean absolute error (MAE), root mean square error (RMSE) and concordance correlation coefficient (CCC) criteria.The CCC indicates the degree to which pairs of the measured and estimated parameter value fall on the 45° line through the origin.    
Results and Discussion
According to coefficient of variation (CV) from the study area, the most variable soil indicator was Ks (CV=155.6%), whereas the least variable was PD (CV= 3.05%) both in bare land use. The Lognormal distribution was found for Ks data in the studied region. The Pearson correlation coefficients (r values) indicated that there are significant correlations between Ks and OC (r=0.36), sand (r=0.60), SAR (r=-0.35), EC (r=-0.22), BD (r=-0.52), TP (r= 0.31), silt (r=-0.60), and clay (r=-0.43). Also, significant correlations were obtained between PR and FWC (r=-0.32), BD (r=0.21), and TP (r=-0.21). The spatial dependency classes of soil variables were determined according to the ratio of nugget variance to sill expressed in percentages: If the ratio was >25% and <75%, the variable was considered moderately spatially dependent; if the ratio was >75%, variable was considered weakly spatially dependent; and if the ratio was <25%, the variable was considered strongly spatially dependent. The strong spatial dependences with the effective ranges of 2443m were found for Ks. The PR and PD variables had the least (335 m) and the highest (2844 m) effective range, respectively. The range of influence indicates the limit distance at which a sample point has influence over another points, that is, the maximum distance for correlation between two sampling point. The models of fitted semivariograms were spherical for Ks and exponential for PR. According to RMSE and CCC criteria, there was not found significant difference between Ks estimates by OK and IDW interpolation methods. The high CCC and low RMSE values for OK compared with IDW indicated the more precision and accuracy of OK in estimating PR in the studied area. Generally, the spatial maps showed that from agricultural to bare land use by nearing to Lake Urmia, the BD and PR increased and consequently TP and Ks decreased.
Conclusion
The results showed that Ks negatively related to the SAR, EC, BD, silt and clay and positively related to the OC, sand, MWD and TP in the study area. Also, PR negatively related to the FWC and TP and positively related to the BD and silt. The spatial dependency was found strong for Ks. The PR revealed the smallest effective range (335 m) among the studied variables. As a suggestion, for subsequent study, soil sampling distance could be taken as 335 m instead of 100 m in order to save time and minimize cost.
Language:
Persian
Published:
Journal of water and soil, Volume:33 Issue: 1, 2019
Pages:
103 to 116
magiran.com/p1974862  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!