Statistical Analysis of Bivariate Failure Time Data Based on Bathtub-shaped Failure Rate Model
Many distributions have been presented with bathtub-shaped failure rates for real-life data. A two-parameter distribution was defined by Chen (2000). This distribution can have a bathtub-shaped or increasing failure rate function. In this paper, we consider two bivariate models based on the proposed  distribution by Chen and use the proposed methods of Marshall and Olkin (1967) in the bivariate case and Marshall and Olkin (1997) in the univariate case. In the second case, their method is generalized to the bivariate case and a new bivariate distribution is introduced. These new bivariate distributions have natural interpretations, and they can be applied in fatal shock models or in competing risks models. We call these new distributions as the bivariate Chen (BCH) distribution and bivariate Chen-geometric (BCHG) distribution, respectively.  Moreover, the BCH can be obtained as a special case of the BCHG model. Then, the various properties of the new distributions are investigated.  The BCHG distribution has five parameters and the maximum likelihood estimators cannot be obtained in a closed form. We suggest using an EM algorithm that is very easy to implement. Also, Monte Carlo simulations are performed to investigate the effectiveness of the proposed algorithm. Finally, we analyze two real data sets for illustrative purposes.
Article Type:
Research/Original Article
Journal of Iranian Statistical Society, Volume:18 Issue:1, 2019
53 - 87  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!