Numerical solution of fractional ordinary differential equations by local discontinuous Galerkin method
Message:
Abstract:
In this paper, we apply the local discontinuous Galerkin method for solving fractional ordinary differential equations, in general.  In this method, choosing the (natural) numerical upwind flux enables us to solve the initial value problems for ordinary fractional equations interval by interval and forward in time. This means that we require to solve a low-order (k+1) × (k+1) system of equations locally in each subinterval, and there is no need to solve the global system; Here k is the degree of the basis functions in each subinterval. To implement the method, we consider the (local) basis functions as the (shifted) Legendre polynomials. This, in turn, makes some of the coefficient matrices in the system of equations sparse and thus accelerates the computations. Also the stability in the infinity norm and the error estimation of the method are discussed. Finally, with a series of linear and nonlinear examples, we show the efficiency and, in particular, the accuracy of the local discontinuous Galerkin method for fractional differential equations.
Article Type:
Research/Original Article
Language:
Persian
Published:
Wavelets and Linear Algebra, Volume:5 Issue: 3, 2019
Pages:
1 - 25
magiran.com/p1985588  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.