Geometrical modeling of fluid inclusion to predict the microthermometric properties: a case study at the Mehdiabad Pb-Zn deposit

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:
Introduction
Fluid inclusions are small, usually microscopic, volumes of pore fluid, which are crystallographically trapped in rocks during diagenesis or fracture healing processes. Nowadays, various techniques are used for resource exploration. Application of a fluid inclusion is one of these methods that has been developed for mineral, geothermal, and petroleum reservoir exploration. The study of fluid inclusions represents our most reliable source of information on the temperature, pressure, and fluid composition data of the ore fluid, and it is one of the most important tools for research into the economic geology and genesis of ore deposits (Moon, 1991). To achieve these goals, transparent and polished slabs of rock material are prepared and optically studied with a petrographic microscope. Samples are viewed under transmitted plane-polarized white light as well as under reflected ultraviolet or blue-violet illumination. During the fluid inclusion petrography, the volume fractions of phases are routinely estimated at room temperature to deduce whether assemblages of cogenetic inclusions were originally trapped from a one-phase or a multi-phase pore fluid. In the present research study, the microthermometric properties of the fluid inclusion data through pressure, temperature, and salinity diagrams were computed by geometrical modeling of fluid inclusion (Bakker and Larryn, 2006). The proposed method provides a quick and low cost technique to preliminarily investigate the microthermometric parameters of the fluid inclusion.
To evaluate the proposed geometrical model, the Mehdiabad Pb-Zn deposit is selected as the case study. The Mehdiabad Pb-Zn deposit is located at the Yazd-Anarak metallogenic belt, 110 km southeast of Yazd, in the Central Iran structural zone. The host rocks of the deposit consist of lower Cretaceous silty limestone and dolomite. The main occurrences are the Calamine mine (CM), the Black-Hill ore (BHO), the East Ridge (ER) and the Central Valley Orebody (CVOB). The ore body consists of a primary sulfide ore and a supergene non-sulfide ore, the latter one having been mined at CM (Ghasemi, 2007; Rajabi et al., 2012).
Materials and methods
The shape and geometry of fluid inclusion are one of the most important parameters, which were applied to estimate 3D degree of filling and find the useful information about temperature, pressure, salinity and depth of trapping without using time-consuming and costly heating-cooling operation. Inclusions in normal thick-sections are rotated stepwise and their projected areas and area-fractions are plotted against rotation angle. The outputs are systematically related to inclusion orientation, inclusion shape, and filling degree. The dependency on orientation is minimized when area fractions are measured at the position where the inclusions project their largest total areas. The shape factor is employed to present a new objective classification of inclusion projections, based on the extracted parameters from digital image processing (Bakker and Larryn, 2006).
In this research, Mehdiabad Pb-Zn deposit has been chosen to evaluate the proposed method. Based on the fluid inclusion petrography, four fluid inclusion types are observed: 1) L+V; 2) L+L; 3) L; and 4) V; L+V phase is the most popular. After preparing 2D image of sections, 2D and 3D degree of fills were calculated by measuring the areas of total, bubble, and spot of fluid inclusion and computing the third dimension (Z) of fluid inclusion. Four geometrical models of volume fractions are defined, including cylinder, tetragonal prism, truncated cone, hexagon, and ellipsoid (Bakker and Larryn, 2006; Hossein Morshedy et al., 2008). In this case study, 3D proper models of the fluid inclusions are selected, depending on its geometry (hexagonal or ellipsoid). Then 2D degrees of filling (area fraction) is converted to 3D degrees of filling (volume fraction). The geometrical modeling results are well matched with computational outputs.
Results and discussion
In this research, the ratios of area to volume fractions in geometrical and computational modelling were calculated 0.75 and 0.77, respectively. In the Mehdiabad Pb-Zn deposit, the main geometrical shapes of fluid inclusions were followed up the hexagonal prism with hexagonal pyramids and ellipsoid models. 3D geometrical modeling of fluid inclusion showed vapor fraction, 25% and density, 0.7 g/cm3, which the microthermometric and other parameters were obtained homogenization temperature nearly 100-200 °C (average of 150 °C), pressure between 400-500 ATM, formation temperature about 250-350 °C, salinity within a range of 10 to 15 wt.% NaCl equiv. and depth of mineralization 150-200 m. This finally achieved results have a high similarity with the typical carbonate-hosted Pb-Zn deposit.
Language:
Persian
Published:
Journal of Economic Geology, Volume:11 Issue: 1, 2019
Pages:
147 to 167
magiran.com/p1989616  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!