Dynamic Instability Analysis of Moderately Thick Rectangular Plates Influenced by an Orbiting Mass Based on the First-order Shear Deformation Theory
Message:
Abstract:
In this paper, the dynamic stability of a moderately thick rectangular plate carrying an orbiting mass and lying on a visco-elastic foundation is studied. Considering all inertial terms of the moving mass and using plate first-order shear deformation theory, the governing equations on the dynamic behavior of the system are derived. The Galerkin’s method on the basis of trigonometric shape functions is applied to change the coupled governing partial differential equations to a system of ordinary differential equations. Due to the alternative motion of the mass along the circular path over the plate’s surface, the governing equations are the equations with the periodic constant. Applying the semi-analytical incremental harmonic balance method, the influences of the relative thickness of the plate, radius of the motion path, and stiffness and damping of the visco-elastic foundation on the instability conditions of the system are investigated. A good agreement can be observed by comparing the predicted results of the incremental harmonic balance method with the numerical solution results. Based on the findings, increasing the radius of the motion path broadens the instability regions. Moreover, increasing the stiffness and damping of the foundation cause the system more stable.
Article Type:
Research/Original Article
Language:
Persian
Published:
Modares Mechanical Engineering, Volume:19 Issue:9, 2019
Pages:
2203 - 2213
magiran.com/p1995167  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!