Landform classification of karstic area by Goemorphometric Index and Artificial Neural Network (Case study: A part of Korram Abad, Biran Shahr and Alashtar Watersheds)
Message:
Abstract:
The geomorphometric indexes have been widely used for separation of surface landform features in the geomorphology science over the past decades. In this study, Multilayer Perceptron Neural Network (MPNN) was used to provide karstic landform classification. To that regard, initially, geomorphometric indicators were extracted from Digital Elevation Model (DEM), and then these indexes were used as neurons of input layer in artificial neural network. Furthermore, the box plots were applied to analyze the relationship between karstic landforms (such as dolines, hills, karstic plains, karstic valley and headland) and geomorphometric indexes. The results showed that 34, 6.9, 1.07, 48.5, 9.51 percent of the studying area are spatially covered by valleys, plains, dolines, highlands and hills respectively. It has also been found that the optimal structure of artificial neural networks for classification of landform is model No. 12-9-1 by having the learning rate 0.1 and 87.18 percent of determination coefficient. Also, it should be noted that the accuracy of the innovative method for classification of karstic landform is 90.58 percent. The analysis revealed that variations in geomorphometric indexes are very visible in the landform of hills, highlands and karstic valleys, whereas there are slightly overlapping in the plains and dolines.
Article Type:
Research/Original Article
Language:
Persian
Published:
Journal of Range and Watershed Management, Volume:72 Issue: 1, 2019
Pages:
107 - 122
magiran.com/p1997843  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.