Extracting Stock Multi-order Rules via Employing a Network Structure and Backward Q-Learning
Traders in stock market consider stock information in the past few days as well as the current day information when making decision about selling or buying stock. To imitate stock traders’ style of decision-making, in this article, League Championship Algorithm (LCA) equipped with teams which have network structure has been introduced to extract multi-order rules. Multi-order rules would be extracted by LCA which not only contain the current day information, but also information of the previous days. Thus, a memory to store useful information has been created for each rule. To evaluate the model, 20 shares of companies in different industrial parts of Tehran stock exchange are used. In the testing simulation, the proposed model shows higher profits or lower losses than the buy & hold and genetic network programming models.
Article Type:
Research/Original Article
Journal of Investment Knowledge, Volume:8 Issue:30, 2019
115 - 138
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!