Estimation of Carbon Sequestration in Iran Agroecosystems using Empirical Models

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction
Carbon sequestration is defined as the permanent gain of carbon by soil, plant or water. Soil as the largest terrestrial carbon pool plays an important role in the global carbon cycle. Due to the role of agricultural systems in CO2 emission, attention to the carbon cycle in agricultural systems is of prime importance. So, the interest in agricultural soils and plant biomass as a carbon sink and an operational mechanism for reducing the atmospheric CO2 level, is increasing. It is estimated that world’s crop-based agriculture occupies 1.7 billion hectares, which can store up to 170 Pg carbon. Thus, the aims of this study were to simulate the relationship between crop residue decomposition rate with carbon to nitrogen ration (C:N) (an index of residue quality) as well as soil moisture regimes (the most important factors in residue decomposition) and also estimation of the attainable carbon sequestration in irrigated systems of five major crops in Iran based on the simulated model.
Materials and methods
Residue decomposition rate of wheat, maize, rapeseed, cotton and soybean (with C:N ratios of 131, 69.7, 87.1, 57.8 and 95.9 , respectively)  in different soil moisture regimes (100, 60 and 30 percentage of field capacity) was studied in a 390-day incubation experiment. Study data was used for simulation of residue decomposition and relative decomposition rate was defined as a function of moisture (fm), C:N (fC:N) and temperature (ftemp). The simulated model was used to evaluate attainable carbon sequestration of the studied crops in five years from 2002-2003 to 2006-2007 based on yield, harvest index and shoot to root ratio in three scenarios of residue retention (100, 50 and 0 percentage of total residue produced) as well as three scenarios of soil moisture regimes of 100, 60 and 30 percentage of field capacity for different provinces of Iran. In this step, residue decomposition during one year after harvest was calculated using fm, fC:N and ft. The difference between proportions of the residue returned to the soil and decomposed residues were considered as un-decomposed residue which was multiplied by 0.45 to gain attainable carbon sequestration. Data of attainable carbon sequestration was analyzed as factorial experiment based on completely randomized design.
Results and discussion
Results indicated that higher C:N and therefore lower residue quality caused lower residue decomposition rate. This parameter was also decreased in soils with lower moisture. Effects of soil moisture on reside decomposition was more pronounced than residue quality. comparison of attainable carbon sequestration in Iran’s provinces revealed that in wheat cropping systems: Kermanshah and Sistan and Balouchestan, in maize: Qazvin and Southern Khorasan, in rapeseed: Isfahan and Boushehr, in cotton: Eastern Azarbaijan and Hormozgan and in soybean cropping system: Ardebil and Eastern Azarbaijan provinces had the highest and lowest attainable carbon sequestration, respectively. Attainable carbon sequestration in all crops was decreased with increasing soil moisture from 30 to 60 and 100% of FC and decreasing residue retention from 100 to 50 and 0 % of total crop residue production. Maize and soybean showed the highest and lowest capability of carbon sequestration, respectively.
Conclusion
Results of the present study highlight the effects of environmental factors such as soil moisture as well as inherent properties of plant residues on residue decomposition. Climate and residue quality are the main determining factors of soil microorganisms activity and residue decomposition and therefore soil attainable carbon sequestration. Better soil moisture condition and temperature, also higher residue quality increases microorganisms activity resulting in more residue decomposition. Furthermore, plant biomass and residue management affects attainable carbon sequestration. Resultant of the mentioned factors determines attainable carbon sequestration in soils of agroecosystems. Regarding to the total carbon sequestration of afore-mentioned crops, Ardebil and Sistan and Balouchestan provinces showed the highest and lowest carbon sequestration, respectively.
Language:
Persian
Published:
Agroecology journal, Volume:11 Issue: 1, 2019
Pages:
103 to 122
magiran.com/p2003227  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!