Investigation of energy loss in step-spillway with obstacles on the step using physical and Flow-3D model

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and aim
To pass the excess water and floodwaters from upstream to downstream of the dams, a structure called "spillway" is used. This structure is vital and integral as they should be ready for operation at any moment. Stepped spillways are introduced as a viable option for improvement of spillways facing problem when flowing the possible maximum flow rate. Stepped spillways consist of stairs which start near the crown and continue to lower heels. Increase of roughness leads to a uniform and continuous distribution energy of the flow over the spillway. This is of great benefit for designers as there is no longer need to the toe of the spillway to create facilities reducing flow energy such as stilling basins.
Materials and Methods
In this study, to increase the roughness on the stepped spillway, barriers are used to increase the energy dissipation. For experimental tests, a flume with a 90 degree bend was used in Islamic Azad University of Ahvaz (IAU-A) and several different types of barriers on the stepped spillway in three shapes with three different lengths and widths as well as using barriers individually and in combination, with 5 different flow rates, a total of 140 tests were performed. After analyzing the results, it was found that in the stepped spillway combined with respectively a triangular, rectangular, and trapezoidal barrier, a decrease in dissipation and energy loss is observed.
Result
Triangular barriers, on average, increase the energy consumption by 15.9%, rectangular barriers, on the average, increase the energy consumption by 13.7% and tipping barriers by an average 11.2% increase in energy depreciation compared to the control model. An increase in the length and width of the barriers results in an increase in dissipation and energy loss. The two-step barriers have the highest energy dissipation and loss. By combining barriers on the two-stair stepped spillway, there is an average of 14.4 percent increase in energy dissipation. Based on the observations, rise in the Froude number from 0.32 to 1.71 leaded to a decrease in dissipation and energy losses which is due to the immersion of the stairs below the water level and the reduction of the roughness of the stairs and with the increase of the intensity of the inflow phenomenon. The simulation results with the Flow-3D math model are close to the physical model, and on average only 6.3% of errors are acceptable.
Conclusion
After analyzing the results, it was found that in the combination of stepped spillway with triangular, rectangular and trapezoidal obstacles, we see a decrease in energy depreciation and energy loss. Also, comparing the simulation results and the physical model shows that the Flow-3D mathematical model find less bias with the physical model and closer to reality.
Language:
Persian
Published:
Water and Soil Conservation, Volume:26 Issue: 2, 2019
Pages:
137 to 156
magiran.com/p2006024  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!