Presenting a Prediction Model for Stock Targeting Through Block Trades
Message:
Abstract:
The logistic regression technique was used to propose a model for predicting stock targeting through block trades. Those characteristics related to the likelihood of companies turning into a target for block trades were investigated. For this purpose gathered data on 117 Tehran Stock Exchange members, whose target of block trades with a trades volume of over 5% and 117 companies that did not target trading, was selected during the period of 2009-2017, using Logit method And probit were studied. The results showed that financial leverage and the change in assets negatively influenced the (block trades) commercialization frequency of the studied companies. It was also found that companies having a greater free cash flow, a higher market share, and a more distributed ownership, as well as companies with state organizations as principal shareholders, were more likely to be turned into commercial blocks. In addition, a comparison was made between the proposed logistic regression model and other well-known prediction models, namely, the artificial neural network and the fuzzy neural network models. The obtained results showed that the fuzzy neural network approach provided a more accurate prediction in terms of stock targeting than other techniques.
Article Type:
Research/Original Article
Language:
Persian
Published:
Journal of Financial Accounting Research, Volume:11 Issue: 1, 2018
Pages:
87 - 102
magiran.com/p2008865  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.