Innovative Hybrid Backward Input Estimation and Data Fusion for High Maneuvering Target Tracking
Author(s):
Message:
Abstract:

A hybrid unknown input estimation based on a new two-sample backward model and data fusion for high maneuvering target tracking is proposed. This new approach is based on the consideration of more than one state and input components from the current single observation. These extracted state and input components would be augmented in a single vector, and the final estimation for unknown target acceleration will be determined. Using a combination of the new backward modeling and traditional modified input estimation (MIE) technique, more information will be extracted. This new hybrid scheme which using more input information can better estimate the target maneuvering structure. Despite the traditional methods, the proposed algorithm introduces two different strategies to state the input estimation including online and delayed estimation scenarios. Also, this paper suggests several different data fusion methods through these strategies. The results are compared with a typical MIE method to evaluate the performance of the proposed hybrid scheme especially for problems in high maneuvering target tracking. The results show that the backward algorithm makes advantages such as reduction of the transient state error and more stability for the estimation by an appropriate combination of the MIE estimator.

Article Type:
Research/Original Article
Language:
English
Published:
International Journal of Industrial Electronics, Control and Optimization, Volume:2 Issue: 4, 2019
Pages:
305 - 319
magiran.com/p2017541  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.