Fault Detection and Identification of High Dimension System by GLOLIMOT
Message:
Abstract:

The Local Model Network (LMN) is one of the common structures to model systems and fault detection and identification. This structure covers the disadvantages of training in fuzzy systems and interpretations in neural networks at the same time. But the algorithms that have been introduced to create LMN, such as LOLIMOT, are very sensitive to the dimension of input space. In other words, the search space and the number of network parameters are increased exponentially by increasing the input dimension, which is called the curse of dimensionality. Therefore in this paper, the LMN structure has been developed, and a new incremental algorithm has been proposed which is based on Genetic algorithm and LOLIMOT algorithm that is called GLOLIMOT. The proposed idea reduces the search space dimension and also optimizes it. The proposed idea and the traditional structure are tested on single-shaft industrial gas turbine prototype model, which has high complexity and high dimension. The results indicate improvement in performance of the proposed structure and algorithm.

Article Type:
Review Article
Language:
English
Published:
International Journal of Industrial Electronics, Control and Optimization, Volume:2 Issue: 4, 2019
Pages:
331 - 342
magiran.com/p2017543  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.