Matrix Reinforcement Coefficients Models for Fracture Investigation of Orthotropic Materials

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
In this paper, the new theory has been3 proposed to investigate the fracture behavior of cracked composite materials. Conforming to this theory, crack is created and distributes in the isotropic matrix. Therefore, contrary to the previous theories related to fracture mechanics of these types of material, which assumes that crack growth occurs in anisotropic homogenous material, the new theory assumes that crack growth occurs in the isotropic matrix, which is affected by fibers in the composite structure of the material. In this approach, fibers are considered as isotropic matrix reinforcements and the reinforcement effects are defined as coefficients in stress state of the isotropic matrix. The coefficients are called reinforcement factors and derived via three different approaches to study the arbitrary crack in 2D materials. Quantifying the reinforcing effects of fibers are conducted when tension across and along fibers and shear loadings exerted on the body. The three methods demonstrate that the reinforcement factors depend on elastic properties, crack growth location and the crack and fiber orientations. However, the method, derived from the micro-mechanic approach, displays their dependence on the fiber volum ratio. Comparing the results of these cofficients with the existing fracture theories illustrates the efficiency and ability of the reinforcement factors in investigation and explanation of the fracture behavior of orthotropic materials.In this paper, the new theory has been3 proposed to investigate the fracture behavior of cracked composite materials. Conforming to this theory, crack is created and distributes in the isotropic matrix. Therefore, contrary to the previous theories related to fracture mechanics of these types of material, which assumes that crack growth occurs in anisotropic homogenous material, the new theory assumes that crack growth occurs in the isotropic matrix, which is affected by fibers in the composite structure of the material. In this approach, fibers are considered as isotropic matrix reinforcements and the reinforcement effects are defined as coefficients in stress state of the isotropic matrix. The coefficients are called reinforcement factors and derived via three different approaches to study the arbitrary crack in 2D materials. Quantifying the reinforcing effects of fibers are conducted when tension across and along fibers and shear loadings exerted on the body. The three methods demonstrate that the reinforcement factors depend on elastic properties, crack growth location and the crack and fiber orientations. However, the method, derived from the micro-mechanic approach, displays their dependence on the fiber volum ratio. Comparing the results of these cofficients with the existing fracture theories illustrates the efficiency and ability of the reinforcement factors in investigation and explanation of the fracture behavior of orthotropic materials.
Language:
Persian
Published:
Modares Mechanical Engineering, Volume:19 Issue: 11, 2019
Pages:
2811 to 2822
magiran.com/p2024556  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!