Modeling oak decline using artificial neural networks

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Oak is a common species in Iran and the most important one in Zagros forests. Zagros forests play a crucial and effective role in water supply, soil conservation and climate modification in Iran. Unfortunately, a significant part of those forests suffer from oak decline. Oak decline (or oak mortality) is a widespread phenomenon in oak forests around the world, which has gained the attention of many researchers in forestry over the past decade. In Iran, this phenomenon was first observed in Zagros forests in 2013. Factors affecting oak decline and their mutual interactions are not clearly identified, which makes understanding and modeling of these processes challenging. Only a few studies have been performed in relation to this phenomenon in Iran. Thus, we chose to determine the most effective parameters and find the best modeling method for oak decline in Iran and especially in Lorestan province.

Materials & Methods

In order to find effective environmental variables, related literature review was thoroughly investigated. Environmental parameters including temperature, precipitation, elevation, slope, direction, soil type, and amount of aerosols were selected as basic influencing parameters. All parameters were then interpolated to produce raster data with 30-meter cell resolution. To find the optimal combination of the parameters, four operators including multiplication, logarithm, hyperbolic transformations, and principal component analysis (PCA) were used. A total 385 different combinations of the influencing parameters were produced using the above mentioned operators. The relation and weight of each parameter are unknown, thus Artificial Neural Networks were used to model oak decline process. Three feed forward artificial neural network, including Back-propagation Neural Network (BP), Probabilistic neural network (PNN) and Support Vector Neural Network (SVNN) were selected as modeling methods. Then, 385 different combinations of the influencing parameters were used in the above mentioned models. To train and evaluate each neural network, a total number of 10000 samples were randomly selected from the study area. 70 percent of these random samples were used to train, 15 percent to evaluate and 15 percent to validate the models. Also, cross-validation method was used to avoid over fitting of neural networks. Finally, 1155 created NN models were compared using R parameter to find the best configuration for modeling oak decline and identifying the most influential environmental parameters in oak decline.

Results & Discussion

Evaluating 1155 different networks indicated that Probabilistic neural network (R=0.87) with 6 inputs, including 1) elevation, 2) slope, 3) direction, 4) aerosols, 5) soil type and 6) principal component of temperature and precipitation, performed better than SVNN and BP in modeling oak decline. Moreover, using different combinations of influencing factors improved the results and increased correlation coefficient (R) of optimal inputs by 0.05 as compared to initial inputs. Thus, it can be concluded that increased number of inputs does not necessarily guarantee a better performance. Furthermore, two principle parameters of temperature and perception have a more significant role in modelling drought stress as compared to other parameters.

Conclusion

Oak decline is a complicated phenomenon and different factors contribute to its occurrence. The present study investigates all environmental parameters affecting oak decline through a comprehensive literature review. Results indicate appropriate performance of probabilistic neural networks in modeling oak decline. Moreover, principal component analysis is considered to be a useful tool for modeling of drought stress in oak trees. Due to different accuracy and precision of these neural networks, it is necessary to evaluate different configurations. For further researches, it is suggested to use other parameters, such as distance from population centers, water table, age of oak trees, oak tree height and characteristics of other nearby trees.

Language:
Persian
Published:
Journal of of Geographical Data (SEPEHR), Volume:28 Issue: 110, 2019
Pages:
65 to 76
magiran.com/p2027665  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!