Protective Effect of Diploschistes ocellatus Against Heat Shock-Mediated Defects on Function of Reproductive Organs in Drosophila melanogaster
Message:
Abstract:
Introduction

Repeated heat shock (HS) stresses reduce the reproduction rate of Drosophila flies. Heat shock proteins (HSPs) protect cells against irreversible damages inducing heatinduced.Oxidative stress declines protective function of HSPs. Diploschistes ocellatus lichen aqueous extract possesses a strong antioxidant potential in vitro. Antioxidants can preserve HSPs function. Therefore, the present study for the first time investigated the cytoprotective effects of D. ocellatus aqueous extract against HS-mediated deleterious effects on reproductive function in Drosophila melanogaster.

Methods

Three different types of culture media including control, 30% lichen extract, and 60%lichen extract were prepared. Adult D. melanogaster flies were placed on Delcour medium and allowed to lay eggs for 2 hours. Then the eggs were equally distributed between the culture media. After flies completed their life cycle, the adult enclosed flies were exposed to HS. To assess reproductive function, the newly emerged adult flies were transferred to the freshly prepared regular culture medium every three days for 3 times and finally adult offspring born to these flies were enumerated.

Results

HS negatively affected the reproduction rate in flies in control group. Quantification of adult enclosed flies born to the D. ocellatus extract treated flies showed that lichen extract could negate the deleterious effects of HS on reproduction function of D. melanogaster in a dose-dependent manner.

Conclusion

Diploschistes ocellatus aqueous extract attenuated the harmful effects of HS stress on reproductive function of D. melanogaster. The secondary metabolites present in D. ocellatus can be considered as a bona fide candidate in novel drug development to target reproductive diseases in which oxidative stress is involved. Moreover, it can be concluded that D. melanogaster is an ideal model organism to induce cellular stress in vitro and study therapeutic potential of lichen extracts.

Article Type:
Research/Original Article
Language:
English
Published:
International journal of basic science in medicine, Volume:4 Issue:2, 2019
Pages:
51 - 55
magiran.com/p2027731  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!