Investigation of Bi-sinusoidal model efficacy in estimation of hourly temperature in different climates of Iran

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and objectives

 Access to hourly temperature due to the more detailed analysis of plant growth processes is of fundamental importance in crop modeling and freezing studies. Also, hourly data is needed for more accurate analysis of climate change effect and atmospheric hazard phenomena on the growth and development of plants. The Bi-sinusoidal model is a precise method in daily temperature modeling which, while considering the sinusoidal nature of temperature variations, is very accurate in detecting the time of minimum and maximum temperature of the day. So far, the accuracy of this method has not been studied in different climates of Iran. The objective of this research is to evaluation of Bi-Sinusoidal model for estimation of hourly temperatures from maximum and minimum daily temperature in different climates of Iran.

Materials and methods

For investigation of the efficiency of Bi-sinusoidal model, the data of meteorological stations in different climates from ultra-dry to very humid climates were used. For this purpose, daily and three-hour recorded temperatures at eight stations include: Ahwaz, Ardabil, Bushehr, Gorgan, Mashhad, Rasht, Tehran and Zahak in 2000 and 2005 were used. In this model, sunrise time is considered as the occurrence time of minimum temperature and maximum temperature occurrence is assumed after passing two-thirds of daytime length. These times can be accurately calculated with astronomical calculations. All the modelling calculations were performed in MATLAB software environment. To evaluate the mean error and mean bias of the model, RMSE and MBE indices were used, respectively.

Results

The results showed that in arid and extra-arid stations, RMSE vary between 1.5 to 2 and in humid and sub-humid stations it’s close to 3 Celsius degrees. Also, it seems that the performance of this model is not related to the season, in other words, the hourly temperature error estimation in hot and cold months is not significantly different. The MBE showed that the model underestimate hourly temperature in warm months and overestimate in cold months. However, the bias error is negligible in most of the months and is less than 0.5 degrees. Variation of actual and modelled temperature showed that circadian fluctuation of temperature in dry region is more similar to sinusoidal changes than humid area.

Conclusion

Investigation of circadian temperature fluctuation showed that this model has some trouble in detection of occurrence time of minimum and maximum temperature in humid stations that this is one of the main sources of this model error. But this model simulates the sinus trend of temperature variations properly. According to development of this model based on ordinary circadian temperature fluctuation, in days with the meteorological phenomena such as warm and cold advection to the region, or in rainy days, the model accuracy in estimating hourly temperatures maybe reduced.

Language:
Persian
Published:
Water and Soil Conservation, Volume:26 Issue: 3, 2019
Pages:
235 to 246
magiran.com/p2031959  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!