A Predictive Model for Mortality of Patients with Thalassemia Using Logistic Regression Model and Genetic Algorithm
Message:
Abstract:
Background

Due to the thalassemia severe complications, prediction of mortality or patients survival has a great importance in early treatment phases. This study purpose was to predict the mortality rate of patients with thalassemia major and thalassemia intermedia, by the use of the binary logistic regression algorithm and genetic algorithm combination.

Methods

This retrospective cohort study was conducted on 909 thalassemia patients by using a questionnaire during 2004-2014. The data of all patients referring to Imam Reza Hospital from 2004 to 2014 have been considered. This study predictive variable is considered to be death or survival of the patient. In this research, we embedded the missing data by the use of the proposed data mining model and MICE algorithm. Totally, 100 patients were excluded from this research, due to the missing or out-of-range data. Death was considered as dependent variable. Also, a predictive model was designed in order to
predict the patient mortality using MATLAB language.

Results

Mean age of the thalassemia patients was 25.7±9.04 years old and at the end of the study death was reported in 185 subjects. Additionally, there were also 26 independent variables. Moreover, the missing variables mean for each patient was 1.8±0.81. The combined predictive model was able to predict the patient survival rate with 94.35% accuracy. In this research, it was found out that 26 independent variables, which were collected from 12 variables were patient mortality predictors. Also, missing data imputation is an important method for increasing the data mining algorithms efficiency.

Conclusions

According to this study results, the use of missing algorithm with the data analysis aid yielded more accurate results, in comparison with the MICE algorithm. Furthermore, 12 parameters affected the patient mortality prediction, which were extracted by the genetic algorithm. Accuracy of the predictive model for the patient death detection was favorable. Consequently, it is recommended to use this model in order to predict the patient mortality.

Article Type:
Research/Original Article
Language:
English
Published:
International Journal of Health Studies, Volume:4 Issue: 3, 2019
Pages:
21 - 26
magiran.com/p2032861  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.