The effect of type and concentration of functional groups on the molecular adsorption of paclitaxel onto graphene oxide in the aqueous environments using molecular dynamics simulations
Message:
Abstract:
Background and Aim

Paclitaxol (PTX) is one of the well-known drugs that has been widely used for chemotherapy of a wide spectrum of cancers. Recently, advanced drug delivery systems using nano-carriers with high selectivity have been used for cancer therapy. Graphene nanostructure and its derivatives, i.e., graphene oxide (GO), are promising candidates for biological applications, such as drug delivery, because of their high specific surface areas. Due to hydrophobicity of graphene, it is not easily dispersed in water. Therefore, functional groups are added to it. In this study, we investigated adsorption of paclitaxel (PTX) drug molecule onto graphene oxide (GO) in aqueous environment. Graphene sheets typically decorated with epoxy (GO-O), and hydroxyl (GO-OH) hydrophilic functional groups can reduce apparent hydrophobicity.

Materials And Methods

Using molecular dynamics (MD) simulations the influence of the functional groups on adsorption of PTX anticancer drug molecules, adsorption energy, and the average distance of drug molecules from surface were evaluated. Simulations were conducted using the LAMMPS software package.

Result

The results showed when the functional groups exceeded the critical value (18%), the number of atoms with the same partial charge in GO-OH system were more than that of GO-O surface. Therefore with an increase in the repulsion forces, the molecule distance became longer due to compressive surface stresses induced in GO-OH system. Furthermore, deformation of surface will result in an increase in the distance of PTX-GO.

Conclusion

Our findings suggested that type of functional groups affecting adsorption of paclitaxel on GO surface was important in drug delivery system. Moreover, the critical value of functional groups can have useful medical applications as in drug delivery systems.

Article Type:
Research/Original Article
Language:
Persian
Published:
Scientific Journal of Kurdistan University of Medical Sciences, Volume:24 Issue:4, 2019
Pages:
138 - 148
magiran.com/p2038998  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!