ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF GRAPHS
Author(s):
Message:
Abstract:
A {it local antimagic labeling} of a connected graph $G$ with at least three vertices, is a bijection $f:E(G) rightarrow {1,2,ldots , |E(G)|}$ such that for any two adjacent vertices $u$ and $v$ of $G$, the condition $omega _{f}(u) neq omega _{f}(v)$ holds; where $omega _{f}(u)=sum _{xin N(u)} f(xu)$. Assigning $omega _{f}(u)$ to $u$ for each vertex $u$ in $V(G)$, induces naturally a proper vertex coloring of $G$; and $|f|$ denotes the number of colors appearing in this proper vertex coloring. The {it local antimagic chromatic number} of $G$, denoted by $chi _{la}(G)$, is defined as the minimum of $|f|$, where $f$ ranges over all local antimagic labelings of $G$. In this paper, we explicitly construct an infinite class  of connected graphs $G$ such that $chi _{la}(G)$ can be arbitrarily large while $chi _{la}(G vee bar{K_{2}})=3$, where $G vee bar{K_{2}}$ is the join graph of $G$ and the complement graph of $K_{2}$. The aforementioned fact leads us to an infinite class of counterexamples to a result of [Local antimagic vertex  coloring of a graph,  Graphs and Combinatorics 33} (2017), 275-285].
Article Type:
Research/Original Article
Language:
English
Published:
Journal of Algebraic Systems, Volume:7 Issue:2, 2019
Pages:
245 - 256
magiran.com/p2040392  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!