A new approximate inverse preconditioner based on the Vaidya’s maximum spanning tree for matrix equation AXB = C
Message:
Abstract:

We propose a new preconditioned global conjugate gradient (PGL-CG) method for the solution of matrix equation AXB = C, where A and B are sparse Stieltjes matrices. The preconditioner is based on the support graph preconditioners. By using Vaidya’s maximum spanning tree precon ditioner and BFS algorithm, we present a new algorithm for computing the approximate inverse preconditioners for matrices A and B and constructing a preconditioner for the matrix equation AXB = C. This preconditioner does not require solving any linear systems and is highly parallelizable. Numerical experiments are given to show the efficiency of the new algorithm on CPU and GPU for the solution of large sparse matrix equation.

Article Type:
Research/Original Article
Language:
English
Published:
Iranian Journal of Numerical Analysis and Optimization, Volume:9 Issue:2, 2019
Pages:
1 - 16
magiran.com/p2040430  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!