Endometrial Mesenchymal Stem Cell-Derived Exosome Promote Endothelial Cell Angiogenesis in a Dose Dependent Manner: A New Perspective on Regenerative Medicine and Cell-Free Therapy

Endometrium is recently introduced as an available source of mesenchymal stem cells (EnMSCs), which can be obtained without anesthesia and side effects. Regarding the issues and complexities of cell-based therapies, exosomes gain tremendous attention as a novel tool for cell-free therapies. Although several clinical trials are recently established based on therapeutic potential of EnMSCs, biological roles of EnMSC-derived exosomes are still unclear.


The current study was conducted to investigate the potential effects of EnMSC- derived exosomes on proliferation, migration, and angiogenesis of human umbilical cord vein endothelial cells (HUVECs). For this purpose, EnMSCs and then EnMSC-derived exosomes were isolated and characterized. MTT assay and wound healing assay as well as tube formation assay were applied.


The collected data showed that EnMSC-derived exosomes significantly increased proliferation, migration, and angiogenesis of HUVECs. It was observed that the effects of exosomes were applied in a dose dependent manner. In addition, expression analysis by quantitative real-time PCR showed that increased expression of proliferation and angiogenesis genes in HUVECs were treated with EnMSC-derived exosomes in a dose dependent manner.


The current study results showed that EnMSC-derived exosomes can exert biological effects such as their source cells and become new candidates for cell-free therapies. Taken together, increased angiogenesis makes EnMSC-derived exosomes a promising tool in regenerative medicine, especially wound healing and treatment of vascular disease

Article Type:
Research/Original Article
Archives of Neuroscience, Volume:6 Issue:4, 2019
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!