Thermal remote sensing studies and comparison with Aeromagnetic studies in the northern Sabalan to Sarab area in order to potential geothermal energy promising areas
Message:
Abstract:
Summary

In this study, satellite images, and aeromagnetic data were analyzed to investigate the geothermal potential in the Ardebil-Sabalan area in Ardebil province. Thermal activity monitoring in and around active volcanic areas using remote sensing is an essential part of volcanology nowadays.In this study, a geothermal survey is conducted in sabalan area of Ardebil province in NW IRAN using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and ASTER (AST L1B) sensor. Magmatism contributes abundant thermal source to study area and the faults provide thermal channels for heat transfer from interior earth to land surface and facilitate the present of geothermal anomalies. The magnetic investigations showed that a deep magnetic anomaly exists in the southern part of the area. These magnetic anomalies were correlated with thermal anomalies. 

Introduction

Development of advanced tools in remote sensing and geophysical exploration geothermal during recent decades indicates the necessity and importance of these tools in industry. They defined thermal anomalies as areas with temperatures higher than the spatial background. Thermal infrared (TIR) remote sensing is one of the essential methods to prospect the geothermal resources. Remote sensing is an important technique for activity monitoring in and around active volcanic areas in this study, a geothermal survey is conducted in the Sabalan area of Ardebil province in NW IRAN using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and ASTER sensor and Geophysical Aeromagnetic data analyzing. Thermal infrared remote (TIR) sensing is an efficient technique to obtain the land surface temperature (LST). With ever increasing attempts on looking for alternative energy sources, TIR remote sensing has become a popular technique in the exploration of geothermal resources. The first application of TIR remote sensing in geothermal exploration can be dated back to the middle of 20th century. The aim of this study is to analyze remote sensing and Aeromagnetic data for evaluating the geothermal potential zones in an area located in the eastern of Ardebil Province. 

Methodology and Approaches

The data studied in this research includes ASTER – ASTL1 B (day and night) reflectance and LST products, for the year 2009, Landsat ETM+ day-time image on 2015, aeromagnetic data collected by Houston Texas Co., America, in 1974-1977. A comparison of the day-time and night-time images can reveal the surface thermal differences for detecting geothermal anomalies. In order to identify geothermal zones, image processing land surface temperature (LST) methods using ENVI software were applied on the using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and ASTER sensor and Geophysical Aeromagnetic data analyzing from the study area. 

Results and Conclusions

The results of this work also suggest that TIR remote sensing is an important technique for geothermal exploration with its high efficiency, simplicity and accuracy in temperature retrieval. Three thermal anomalies were detected on the maps and charts obtained for the average temperature difference and apparent thermal inertia. One anomaly is located in the Sabalan area and the other one is situated in the Northern part of the Ardebil side. the results of magnetic interpretations confirmed thermal anomalies showing a deep magnetic anomaly in the southern region and another magnetic anomaly in the hot spring.

Article Type:
Research/Original Article
Language:
Persian
Published:
Journal of Aalytical and Numerical Methods in Mining Engineering, Volume:9 Issue:20, 2019
Pages:
67 - 80
magiran.com/p2050530  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!