Presentation a new and efficient imaging condition in Reverse Time Migration

Author(s):
Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Summary

Reverse time migration (RTM) as a new seismic imaging method solves the two-way wave equation and has been implemented through three main steps including forward and backward wave-field extrapolation from the source and receiver and employing a proper imaging condition. RTM models all types of wave without any dip limitation. This is very important regarding the drawbacks of ray-based and one-way wave equation imaging methods in properly imaging the complex geological media. Despite the above superiorities, low frequency artifacts especially in large reflection angles (60 to 90 degree) are the main drawback of RTM which cover and reduce the migrated image quality. Therefore, the aim of this paper is to improve the imaging condition as the heart of RTM to suppress the low frequency artifacts and use the useful information of the large reflection angle domain (60 to 90 degree) and produce a high quality image. This was achieved by presenting a new imaging condition including a weighted function based on the reflection angles. Finally, the RTM results using the new proposed imaging condition was presented and compared with the results of some conventional and modern similar methods. 

Introduction

Seismic imaging is based on numerical solutions to wave equations, which can be classified into ray-based (integral) solutions and wave field-based (differential) solutions. In complex geological structures such as subsalt media, the velocity variation leading to complex multi-pathing reflections. Hence ray-tracing may fail to image the subsurface properly and cannot image steeply dipping reflectors corresponding to the velocity model. On the other hand, one-way wave propagation extrapolates wave-fields vertically and cannot accurately model waves that propagate nearly horizontally. they fail to handle waves propagating at wider angles, especially those near or beyond 90°. RTM directly solves the full (two-way) acoustic wave equation and incorporates all type of waves propagating in different directions. Hence, it has proved to be the preferred imaging algorithm in many geologically complex basins. RTM can image the complex geological media properly which is beyond the limits of one-way wave equation-based migration algorithms. Nevertheless, RTM has its limitations. The major drawback is the low frequency artifacts produced by the image condition (zero cross-correlation at lag) or by strong velocity contrast which is the main topic of this paper to be developed to suppress the RTM artifacts. 

Methodology and Approaches

To suppress the RTM artifacts, the imaging condition as the heart of RTM was developed. A new presented imaging condition includes the separated down-going and up-going wave-fields and a new weighted function based on the reflection angles. It  is implemented to suppress the low frequency artifacts for large reflection angles and maintain the useful information for the same reflection angle domain through an advance procedure.
 

Results and Conclusions

RTM results using the presented imaging condition indicates that the low frequency artifacts was suppressed properly and the subsurface geological structures was imaged as well as possible in final migrated image I comparison the other seismic imaging methods.

Language:
Persian
Published:
Journal of Aalytical and Numerical Methods in Mining Engineering, Volume:9 Issue: 20, 2019
Pages:
81 to 87
magiran.com/p2050531  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!