An Ensemble Method for Diagnosis of Parkinson’s Disease Based on  Voice Measurements
Message:
Abstract:
Background

Parkinson’s disease (PD) is the most common destructive neurological disorder after Alzheimer’s disease. Unfortunately, there is no specific test such as electroencephalography or blood test for diagnosing the disease. In accordance with the previous studies, about 90% of people with PD have some types of voice abnormalities. Therefore, voice measurements can be used to detect the disease.

Methods

This study presents an ensemble‑based method for identifying patients and healthy samples by class label prediction based on voice frequency characteristics. It includes three stages of data preprocessing, internal classification and ultimate classification. The outcomes of internal classifiers next to primary feature vector of samples are considered the ultimate classifier inputs.

Results

According to the results, the proposed method achieved 90.6% of accuracy, 95.8% of sensitivity, and 75% of specificity, admissible compared to those of other relevant studies.

Conclusion

Current experimental outcomes provide a comparative analysis of various machine learning classifiers and confirm that using ensemble‑based methods has improved medical diagnostic tasks.

Article Type:
Research/Original Article
Language:
English
Published:
Journal of Medical Signals and Sensors, Volume:9 Issue:4, 2019
Pages:
221 - 226
magiran.com/p2052060  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!