Efficient Higher-Order Shear Deformation Theories for Instability Analysis of Plates Carrying a Mass Moving on an Elliptical Path

The dynamic performance of structures under traveling loads should be exactly analyzed to have a safe and reasonable structural design. Different higher-order shear deformation theories are proposed in this paper to analyze the dynamic stability of thick elastic plates carrying a moving mass. The displacement fields of different theories are chosen based upon variations along the thickness as cubic, sinusoidal, hyperbolic and exponential. The well-known Hamilton’s principle is utilized to derive equations of motion and then they are solved using the Galerkin method. The energy-rate method is used as a numerical method to calculate the boundary curves separating the stable and unstable regions in the moving mass parameters plane. Effects of the relative plate thickness, trajectories radii and the Winkler foundation stiffness on the system stability are examined. The results obtained in this research are compared, in a special case, with those of the Kirchhoff’s plate model for the validation.

Article Type:
Research/Original Article
Journal of Solid Mechanics, Volume:11 Issue:4, 2019
790 - 808
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!