Rheology of cellulose nanofibers in paper making: An overview

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and objectives

Today, the use of cellulosic nanofibers is widely researched for the production of various products, such as paper and paperboard. Cellulose nanofibers are made from pulp produced from various lignocellulosic sources in various methods. The quality of these materials can be evaluated in different ways. Meanwhile, the rheology indices of cellulosic nanofibers are one of the simplest and least costly methods to evaluate the quality of this material. In this paper, specifically, the relationship between indices of rheology of cellulosic nanofibers and their ability to improve paper and board strengths for papermaking are introduced.

Materials and methods

In this article, materials were categorized in terms of rheology sciences and cellulose nanofibers were specified among them. Then, important indices of rheology of cellulose nanofibers such as yield point, damping coefficient, storage modulus, loss modulus, and yield strain were introduced by presenting some of the results of measuring the rheological indices of cellulosic nanofibers. In the following, the relationship between rheological indices and strengthening ability of cellulose nanofibers to improve tensile and burst strengths of paper and paperboard production were investigated.

Results

The more storage modulus, as the most sensitive parameter in viscoelastic measurements compared to the loss modulus, the more viscoelastic ability and more elastic tendency. For cellulose nanofibers, if the ratio of the storage modulus is about 4 times greater than the loss modulus in the same concentrations, this indicates that the material is viscoelastic with considerable elasticity. If the amount of damping coefficient for cellulose nanoparticle gel is less than 0.3, this indicates that these gels are highly elastic with components in the nanometer scale and these characteristics indicate the presence of tangled cellulose nanofiber network and as a result, more strengthening feature is available for a variety of applications as strengthening paper and paperboard products. The critical strain on the behavior of the cellulosic nanofiber’s rheology appears almost independent of its dry matter content which implies the sustainability of the viscoelastic properties of these gels. The thick and dilute produced nanofiber gels have an exponential, with power 3, relationship with dry content (n ∝ G∅). The exponential, with power 3, relationship between the modulus and dry matter percentage is one of the criteria for the achievement of a gel of nanoscale cellulosic fibres.

Conclusion

In general, cellulose nanofibers gel is considered as a viscoelastic and thixotropic fluid and when used in paper and paperboard productions, the higher elastomeric index of it creates more strength properties of products. Therefore, in order to predict the achievement of nanosized fibres gel during production, a cheaper evaluation of the cellulosic rheology indices could be used instead of expensive images and even with the comparison of two types of cellulosic nanofibers, their rheological properties predict their performance for reinforcing paper and paperboard.

Language:
Persian
Published:
Wood & Forest Science and Technology, Volume:26 Issue: 2, 2019
Pages:
75 to 90
magiran.com/p2053039  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!