Crash Injury Analysis of Knee Joint Considering Pedestrian Safety
Author(s):
Message:
Abstract:
Background

Lower extremity injuries are frequently observed in car-to-pedestrian accidents and due to the bumper height of most cars, knee joint is one of the most damaged body parts in car-to-pedestrian collisions.

Objective

The aim of this paper is first to provide an accurate Finite Element model of the knee joint and second to investigate lower limb impact biomechanics in car-to-pedestrian accidents and to predict the effect of parameters such as collision speed and height due to the car speed and bumper height on knee joint injuries, especially in soft tissues such as ligaments, cartilages and menisci.

Materials and Methods

In this analytical study, a 3D finite element (FE) model of human body knee joint is developed based on human anatomy. The model consists of femur, tibia, menisci, articular cartilages and ligaments. Material properties of bones and soft tissues were assumed to be elastic, homogenous and isotropic.

Results

FE model is used to perform injury reconstructions and predict the damages by using physical parameters such as Von-Mises stress and equivalent elastic strain of tissues.

Conclusion

The results of simulations first show that the most vulnerable part of the knee is MCL ligament and second the effect of speed and height of the impact on knee joint. In the critical member, MCL, the damage increased in higher speeds but as an exception, smaller damages took place in menisci due to the increased distance of two bones in the higher speed.

Article Type:
Research/Original Article
Language:
English
Published:
Journal of Biomedical Physics & Engineering, Volume:9 Issue:5, 2019
Pages:
569 - 578
magiran.com/p2058177  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!