Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Message:
Abstract:
Introduction

In this paper, a method is presented to classify the breast cancer masses according to new geometric features.

Methods

After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other normal parts of the breast image. In this study, 19 final different features of each image were extracted to generate the feature vector for classifier input. The proposed method not only determined the boundary of masses but also classified the type of masses such as benign and malignant ones. The neural network classification methods such as the radial basis function (RBF), probabilistic neural network (PNN), and multi-layer perceptron (MLP) as well as  the Takagi-Sugeno-Kang (TSK) fuzzy classification,  the  binary  statistic  classifier,  and  the  k-nearest  neighbors  (KNN) clustering algorithm were used for the final decision of mass class.

Results

The best results of the proposed method for accuracy, sensitivity, and specificity metrics were obtained 97%±4.36, 100%±0 and 96%±5.81, respectively for support vector machine (SVM) classifier.

Conclusions

By comparing the results of the proposed method with the results of the other previous methods, the efficiency of the proposed algorithm was reported.

Article Type:
Research/Original Article
Language:
English
Published:
Multidisciplinary Cancer Investigation, Volume:3 Issue: 4, 2019
Pages:
13 - 24
magiran.com/p2060509  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.