Integration of SimWeight and Markov Chain to Predict Land Use of Lavasanat Basin
Article Type:
Research/Original Article (دارای رتبه معتبر)

Production and prediction of land-use/land cover changes (LULCC) map are among the significant issues regarding input of many environmental and hydrological models. Among various introduced methods, similarity-weighted instance-based machine learning algorithm (SimWeight) and Markov-chain with lower complexity and proper performnce are frequently used. The main aim of this study is utilizing SimWeight along with Markov chain to predict land-use map of Lavasanat basin located in north-east of Tehran for the year 2018. In this regrad, eight driver variables and two land-use maps of the sudy area which were created from two Landsat-5 TM image sensor for the years 2000 and 2011 were considered as input. To evaluate the result of SimWeight, Receiver Operating Characteristic was used. The Land-use map of year 2018 was predicted using the proposed method. To evaluate this map, a land-use map of 2018 was produced using classification of a Landsat-8 OLI image. The results of model and value of area under curve (AUC) for transition potential map was about 0.78, which indicated  good performance. Furthermore, the comparison of two produced and predicted land-use maps of 2018 shows great similarity. Generally, the results indicated the proper performance of the propsed method to predict LULCC.

Journal of Numerical Methods in Civil Engineering, Volume:2 Issue: 4, Jun 2018
1 to 9  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!