A locally Convex Topology on the Beurling Algebras

Author(s):
Message:
Abstract:
Introduction
Let G be a locally compact group with a fixed left Haar measure λ  and   be a weight function on G;  that is a Borel measurable function  with   for all .   We denote by  the set of all measurable  functions  such that ; the group algebra of  G  as defined in [2]. Then   with the convolution product “*” and the norm   defined by   is a Banach algebra known as Beurling algebra. We denote by n(G,) the topology generated by the  norm .    Also, let  denote the space of all measurable functions   with , the Lebesgue space as defined in [2].
Then   with   the product  defined by , the   norm  defined by  , and the complex conjugation as involution is a commutative algebra. Moreover,  is the dual of . In fact, the mapping   is an isometric isomorphism.
 We denote by the -subalgebra of  consisting of all functions  on G such that for each , there is a compact subset K of G for which
.  For a study of in the unweighted case see  [3,6].
 We introduce and study a locally convex topology  on  such that  can be identified with the strong dual of . Our work generalizes  some interesting results of  [15] for group algebras to a more general setting of weighted group algebras. We also show that (,)  could be a normable or bornological space only if G is compact. Finally, we prove that  is complemented in   if and only if G is compact. For some similar recent studies see [4,7,8,10,12-14]. One may be interested to see the work [9] for an application of these results.
Main
results
We denote by   the set of increasing sequences of compact subsets of G and by ℛ the set of increasing sequences  of real numbers in  divergent to infinity. For any  and , set and note that  is a convex balanced absorbing set in the space . It is easy to see that the family of all sets  is a base of neighbourhoods of zero for a locally convex topology on  see for example [16]. We denote this topology by .  Here we use some ideas from  [15], where this topology has been introduced and studied for  group algebras.
Proposition 2.1 Let G be a locally compact group, and  be a weight function on G.   The norm topology n(G,) on  coincides with the topology  if and only if G is compact.
Proposition 2.2 Let G be a locally compact group, and  be a weight function on G.  Then the dual of (,)  endowed with the strong topology can be identified with endowed with -topology.
Proposition 2.3 Let G be a locally compact group, and  be a weight function on G.  Then the following assertions are equivalent:a) (,)  is barrelled.
b) (,)  is bornological.
c) (,)  is metrizable.
d) G  is compact.
Proposition 2.4 Let G be a locally compact group, and  be a weight function on G.  Then  is not complemented in ../files/site1/files/52/10.pdf
Language:
Persian
Published:
Journal of Mathematical Researches, Volume:5 Issue: 2, 2020
Pages:
221 to 228
magiran.com/p2065073  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!