Zinc Desorption Kinetics in Corn Rhizosphere during Cultivation Period in a Calcareous Soil

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and objectives

Desorption of Zinc (Zn) in the rhizosphere soil is the primary factor that affects bioavailability of Zn. Desorption kinetics in the rhizosphere soil is an important process that controls the availability of the metals to plants. To investigate the effect of root activity on Zn desorption in a polluted soil at different harvesting times, a greenhouse experiment was conducted using rhizobox.

Materials and methods

Soil sample was collected from the 0–30 cm depth of a calcareous soil from agricultural fields located in the Zanjan province, Iran. In order to study the effect of maize root exudates on the Zn desorption using from a rhizobox. The dimension of the rhizobox was 200 mm × 200 mm × 150 mm (length × width × height). The rhizobox was divided into three sections from central to left or right boundary of rhizobox which were surrounded by nylon cloth (300 mesh), viz. a central zone for plant growth (20 mm in width), near rhizosphere zones (20 mm in width), and bulk soil zones (40 mm in width). Eight seeds were sown per rhizosphere zone and subsequently thinned to two plants. Plants were grown under greenhouse conditions. Plants were harvested 30, 60 and 90 days after germination. This research was conducted in a factorial design, with 3 replications, three levels of time (30, 60 and 90 day) and three zones classified based on their distance from root. The kinetics of Zn desorption in bulk and rhizosphere soil was determined by successive extraction with DTPA-TEA in a period of 1 to 528 h at 25±1 0C.

Results

The results showed that cumulative desorption of Zn increased with time. Zinc desorption rate in the maize rhizosphere soils were significantly (p<0.05) lower than bulk soils at 60 days after planted. There were also significant differences between harvesting times. The mean of Zn desorption in the bulk, near root and the rhizosphere soils were 278.5, 269.18 and 259.7 mg kg-1, respectively at 60 days after planted. Comparisons of R2 and SE values indicated that the power function and first-order kinetic equations described the reaction rates fairy well, as evidenced by the high coefficients of determination and low standard error of the estimate. The desorption rate constants in the first-order and power function equations have been introduced as an index of Zn desorption rates in the rhizosphere and the bulk soils. Also, the parameter b in power function was

Conclusion

The results of this research revealed that Zn desorption characteristics that are helpful to estimate the Zn supplying power of soils in the maize rhizosphere, are quite different in rhizosphere and bulk soil.

Language:
Persian
Published:
Water and Soil Conservation, Volume:26 Issue: 4, 2019
Pages:
223 to 238
magiran.com/p2069638  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!