Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
Message:
Abstract:

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics of soaring road accidents resulting from human error, on the other hand, reminds us of the necessity to conduct more extensive research on the design, manufacturing and control of driver-less intelligent vehicles. For the automatic control of an autonomous vehicle, we need its dynamic model, which, due to the existing uncertainties, the un-modeled dynamics and the performed simpli cations, is impossible to determine exactly. Add to this, the external disturbances that exist on the movement path. In this paper, two adaptive controllers have been proposed for tracking the trajectory of a car-like robot. The rst controller includes an indirect radial-basis-function neural network whose parameters are updated online via gradient descent. The second controller is adaptively updated online by means of fuzzy logic. The proposed controller includes a nonlinear robust section that uses the sliding mode method and a fuzzy logic section that updates some of the nonlinear control parameters online. The fuzzy logic system has been designed to deal with the chattering problem in the controller of car-like robot. In both controllers, the parameters have been determined by means of genetic algorithm. The obtained results indicate that even with the consideration of un-ideal effects such as uncertainties and external disturbances, the proposed controller has been able to perform successfully.

Article Type:
Research/Original Article
Language:
English
Published:
International Journal Of Nonlinear Analysis And Applications, Volume:10 Issue:1, 2019
Pages:
153 - 166
magiran.com/p2070671  
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!