Financial risk assessment based on Extreme Value Theory and instantaneous data of Tehran Stock Exchange Index
Value at Risk is one of the most important criteria in financial markets for risk assessment. Various methods have been proposed for measuring this index. Extreme Value Theory is one of the new methods for calculating the value at risk that focuses on Distribution sequence of series, and instead of taking all data into account without considering the limiting assumptions such as the assumption of normalization. In this research, the logarithmic return of Tehran Stock Exchange index based on the data received during the time intervals of the day (due to the use of high frequency data) during the years 1392 to 1395 was summed up and the Block Maxima Approach was used in VaR measurement. Given the correlation between the variance and the time series of the data, the problem was first solved using the E-GARCH model. Then VaR index was calculated in three blocking conditions based on hourly, daily and monthly data. The results showed that the use of monthly data in calculating this index has a higher predictive accuracy.
Article Type:
Research/Original Article
Journal of Investment Knowledge, Volume:8 Issue: 32, 2019
51 - 66  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.