مدل سازی و پهنه بندی پارامترهای کیفیت آب با استفاده از تصاویر ماهواره ای سنتینل-2 و هوش محاسباتی (مطالعه موردی: رودخانه کارون)

پیام:
چکیده:

با توجه به پیشرفت های صورت گرفته در فناوری سنجش ازدور، جمع آوری اطلاعات از وضعیت کیفی منابع آب سطحی به وسیله این فناوری ضمن کاهش هزینه و زمان نمونه برداری های سنتی، می تواند تمامی پهنه های آب سطحی را مورد پایش قرار دهد. در این مطالعه قابلیت تصاویر ماهواره سنتینل-2 جهت برآورد غلظت پارامترهای اسیدیته، بیکربنات و سولفات موردبررسی قرار گرفت. ابتدا تصاویر ماهواره سنتینل-2 پیش پردازش شد و سپس باندها و شاخص های طیفی مناسبی جهت شناسایی ارتباط معنی دار میان مقادیر هر پارامتر کیفیت آب و تصاویر با استفاده از روش رگرسیون چند متغیره تعیین گردید. در مرحله بعد با به کارگیری دو مدل شبکه عصبی مصنوعی ANN و مدل سیستم استنتاج فازی-عصبی تطبیق یافته ANFIS، ارتباط میان تصاویر ماهواره سنتینل-2 و پارامترهای کیفیت آب به تفکیک مدل سازی شده و سپس دقت آن ها به ازای مقادیر واقعی محاسبه گردید. نتایج نشان داد که در مدل سازی پارامتر سولفات با استفاده از ماهواره سنتینل-2، مدل ANFIS به ترتیب با خطای نسبی و جذر میانگین مربعات خطا RMSe برابر 0.0773 و 0.8014 نسبت به مدل شبکه عصبی مصنوعی با خطای نسبی و RMSe برابر 0.1581 و 1.2477 دقت بالاتری دارد؛ درحالی که در مدل سازی پارامترهای اسیدیته و بیکربنات، نتایج حاصل از مدل شبکه عصبی مصنوعی با خطای نسبی به ترتیب برابر با 0.0064 و 0.0556 و RMSe برابر با 0.0702 و 0.2691 برای هر دو پارامتر بهتر از مدل سیستم استنتاج فازی-عصبی تطبیق یافته با خطای نسبی به ترتیب برابر با 0.0165 و 0.0722 و RMSe برابر با 0.1975 و 0.3307 است. درنهایت با اعمال مدل های تهیه شده بر روی تصاویر ماهواره ای، نقشه وضعیت کیفی هر پارامتر در طول قسمتی از رودخانه کارون تهیه گردید.

نوع مقاله:
مطالعه موردی
زبان:
فارسی
صفحات:
21 -37
لینک کوتاه:
magiran.com/p2083197 
روش‌های دسترسی به متن این مطلب
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!