Commutativity degree and non-commuting graph in finite groups and Mofang Loops and their relationships
Message:
Abstract:

Terms like commutativity degree, non-commuting graph and isoclinism are far well-known for much of the group theorists nowadays. There are so many papers about each of these concepts and also about their relationships in finite groups. Also, there are some recent researches about generalizing these notions in finite rings and their connexions.The concepts of commutativity degree and non-commuting graph are also extended to non-associative structures such as Moufang loops and some part of the known results in group theory in these contexts have been expanded to them.In this paper, we are going to generalize the notion of isoclinism in finite Moufang loops and then study the relationships between these three concepts. Among other results, we prove that two isoclinic finite Moufang loops have the same commutativity degree and if they have the same sizes of centers and commutants then they have isomorphic non-commuting graphs. Also, the converses of these results have been investigated.Furthermore, it has been proved that a finite simple group can be characterized by its non-commuting graph. We will prove the same is true for a finite simple Moufang loop by imposing one additional hypothesis, namely, the isoclinism of the regarding loops.

Article Type:
Research/Original Article
Language:
English
Published:
Journal of Algebraic Structures and Their Applications, Volume:7 Issue: 1, 2020
Pages:
69 - 82
magiran.com/p2088310  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.