Effect of Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP) on the Yield and Nitrate Accumulation of Spinach in Different Soils

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Leafy vegetables such as spinach (Spinaciaoleracea L.) contain high levels of nitrate. Using nitrification inhibitors (NIs) such as 3,4-dimethylpyrazole phosphate (DMPP) is one of the strategies for reducing nitrate accumulation. Nitrification inhibitors are compounds that delay the biological oxidation of ammonium to nitrite by depressing the activity of Nitrosomonas bacteria in soil. Soil properties such as texture, pH, organic matter, moisture, temperature and mineral nitrogen have important effects on the efficiency of NIs to delay nitrification. A pot experiment was conducted to investigate the effects of NI 3,4-dimethylpyrazole phosphate (DMPP) on soil mineral nitrogen (ammonium and nitrate) content, yield and nitrate concentration of spinach.

Materials and Methods

A completely randomized factorial design was carried out employing three factors consisted of nitrogen fertilizer type, soil type and spinach variety with three replications at Shahrekord University. Nitrogen fertilizers included urea, ammonium sulfate nitrate (ASN) and ASN plus DMPP (0.8 %). A no N fertilizer application was considered as control treatment. The soil factor contained 3 different soils with different physical and chemical characteristics. Two spinach varieties were smooth-leaf (Giant Santos) and wrinkled-leaf (Viking). The dose of applied nitrogen in all experimental treatments was 150 mg kg-1 soil that was applied in two split doses before sowing and after one month. The textures of three selected soils were loamy sand, loam and silty clay for the soils number 1, 2 and 3, respectively. Three selected soils were non-saline (EC1:2=0.14-0.31 dS m-1) and alkaline (pH1:2=7.9-8.0). Organic carbon and calcium carbonate equivalent (CCE) ranged from 0.26% to 0.35% and 28.5% to 36.2%, respectively. At 30 and 60 days after sowing, soil subsamples were taken to determine ammonium and nitrate content. The ammonium and nitrate concentrations (extracted with 0.5 M K2SO4) were determined calorimetrically using a spectrophotometer at a wavelength of 667 and 410 nm, respectively. At the end of the experiment, shoot fresh weight was determined and plants was mixed and dried to measure nitrate accumulation.

Results and Discussion

The results indicated that the application of ASN with DMPP led to significant increase of ammonium compared with ASN and urea fertilizers in three soils. At 30 days after sowing, the amount of this increase for ASN plus DMPP in comparison of ASN and urea were 182% and 78% for the soil number 1 (loamy sand), 105% and 65% for the soil number 2 (loam) and 89% and 74% for the soil number 3 (silty clay), respectively. By contrast, the application of ASN with DMPP led to significant decrease of soil nitrate in comparison of ASN and urea fertilizers in three soils. At 60 days after sowing, the amount of this decrease for ASN plus DMPP in comparison of ASN was 52%, 40% and 27% for the soils number of 1, 2 and 3, respectively. It means that the application of DMPP has slowed down the process of ammonium oxidation to nitrite. In fact, the addition of DMPP retained soil nitrogen as ammonium form for longer time. The application of NI DMPP also had positive effect on decrease of nitrate concentration in the soil. Unlike nitrate, ammonium is less susceptible to leaching and thus the application of DMPP can reduces nitrogen loss from the soil. However, the application of ASN with nitrification inhibitor DMPP in soils No. 2 (loamy sand) and No. 3 (loamy) significantly reduced shoot fresh weight of both spinach varieties compared with the similar treatment but without NI. This decrease was due to the toxic effects of high level of soil ammonium on the plant growth. While, in the soil No. 3 (silty clay) in Viking variety, the use of ASN plus DMPP resulted in significant increase of spinach shoot fresh weight to 29% in comparison with the same treatment but without NI. The highest and lowest values of shoot fresh weight (229 and 16.2 g pot-1, respectively) were obtained by Giant Santos variety in soil No. 3 (silty clay) with ASN plus DMPP and soil No. 1 (sandy loam) with no added N fertilizer. The application of ASN with nitrification inhibitor DMPP induced significant decrease of shoot nitrate concentration in spinach in comparison of ASN and urea. The amounts of this decrease for ASN plus DMPP in comparison with ASN and urea were 25.7% and 31.5% for the soil number 1 (loamy sand), 29.1% and 37.1% for the soil number 2 (loam) and 33.9% and 34.0% for the soil number 3 (silty clay), respectively. This decrease was due to ammonium nutrition of spinach plants.

Conclusion

In all studied soils, application of ASN with nitrification inhibitor DMPP is recommended for diminishing nitrate content in both spinach varieties (Giant Santos and Viking).

Language:
Persian
Published:
Journal of water and soil, Volume:33 Issue: 5, 2020
Pages:
751 to 762
magiran.com/p2090232  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!