Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Message:
Abstract:
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering algorithms perform poorly on this kind of data. In this paper, a novel hybrid feature selection technique is proposed, which can reduce drastically the number of features with an acceptable loss of prediction accuracy. The proposed approach operates in multiple stages, starting by removing irrelevant features with a low discrimination power, and then eliminating the ones with low variation range. Afterward, among each set of features with high cross-correlation, a single feature that is strongly correlated with the output is kept. Finally, a Genetic Algorithm with a customized cost function is provided to select a small subset of the remainder of features. To show the effectiveness of the proposed approach, we investigated two challenging case studies with sample set sizes of about 100 and the number of features larger than 1000. The experimental results look promising as they showed a percentage decrease of more than 99% in the number of features, with a prediction accuracy of more than 92%.
Article Type:
Research/Original Article
Language:
English
Published:
International Journal of Engineering, Volume:33 Issue: 2, 2020
Pages:
213 - 220
magiran.com/p2099621  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.