Comparison of Survival Forests in Analyzing First Birth Interval
Background and objectives

Application of statistical machine learning methods such as ensemble based approaches in survival analysis has been received considerable interest over the past decades in time-to-event data sets. One of these practical methods is survival forests which have been developed in a variety of contexts due to their high precision, non-parametric and non-linear nature. This article aims to evaluate the performance of survival forests by comparing them with Cox-proportional hazards (CPH) model in studying first birth interval (FBI).


A cross sectional study in 2017 was conducted by the stratified random sampling and a structured questionnaire to gather the information of 610, 15-49-year-old married women in Tehran. Considering some influential covariates on FBI, random survival forest (RSF) and conditional inference forest (CIF) were constructed by bootstrap sampling method (1000 trees) using R-language packages. Then, the best model is used to identify important predictors of FBI by variable importance (VIMP) and minimal depth measures.


According to prediction accuracy results by out-of-bag (OOB) C-index and integrated Brier score (IBS), RSF outperforms CPH and CIF in analyzing FBI (C-index of 0.754 for RSF vs 0.688 for CIF and 0.524 for CPH and IBS of 0.076 for RSF vs 0.086 for CIF and 0.107 for CPH). Woman’s age was the most important predictor on FBI.


Applying suitable method in analyzing FBI assures the results which be used for making policies to overcome decrement in total fertility rate.

Article Type:
Research/Original Article
Jorjani Biomedicine Journal, Volume:7 Issue: 3, 2019
11 - 23  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 300,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.