Maximum Power Point Tracking Using State-dependent Riccati equation based Model Reference Adaptive Control
Article Type:
Research/Original Article (دارای رتبه معتبر)

In this paper, an adaptive control method is proposed for maximum power point tracking (MPPT) in photovoltaic (PV) systems. For improving the performance of an MPPT, this study develops a two-level adaptive control structure that can decrease difficulty in system control and efficiently handle the uncertainties and perturbations in the PV systems and the environment. The first control level is a ripple correlation control (RCC), and the second level is a model reference adaptive control (MRAC). This paper emphasizes mainly on designing the MRAC algorithm, which improves the underdamped dynamic response of the PV system. The original state-space equation of PV system is time-varying and nonlinear, and its step response contains oscillatory transients that damp slowly. Using the extended state-dependent Riccati equation (ESDRE) approach, an optimal law of the controller is derived for the MRAC system to remove the underdamped modes in PV systems. A algorithm of scanning the P-V curve of the PV array is proposed to seek the global maximum power point (GMPP) in the partial shading conditions (PSCs). It is shown that the proposed control algorithm enables the system to converge to the maximum power point in milliseconds in partial shading conditions .

International Journal of Industrial Electronics, Control and Optimization, Volume:3 Issue: 2, Spring 2020
115 to 124  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 990,000ريال می‌توانید 60 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe for 50 € euros via PayPal and download 60 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!