ترکیب روش ‏های ادغام تصاویر چندزمانه و طبقه بندی جهت پایش تغییرات دریاچه مهارلو در بازه زمانی پنج ساله (2018 - 2013)

پیام:
چکیده:
سابقه وهدف

در بسیاری از تحقیق ها برای پایش تغییرات سطح آب ابتدا تصاویر چندزمانه به طور مجزا تحلیل می شوند و پس از استخراج محدوده آب، این محدوده ها با یکدیگر مقایسه شده و میزان تغییرات مشخص می‏ گردد. با وجود این، به روش هایی نیاز است که افزون بر دقت زیاد، شناسایی تغییرات را نیز تسهیل کنند. بنابراین، برای نیل به این هدف، در این تحقیق از روش ه ای ادغام تصاویر چند زمانه و طبقه بندی جهت استخراج تغییرات دریاچه مهارلو بین سال های 2013 تا 2018 استفاده می‏ شود.

مواد و روش ها

پس از انجام پیش ‏پردازش ‏های لازم، از دو روش گرام – اشمیت و تبدیل مولفه های اصلی برای ادغام تصاویر استفاده شد و با اعمال روش های طبقه‌بندی بر روی تصاویر ادغام شده، مناطق تغییریافته و بدون ‏تغییر استخراج شدند. از روش های ماشین بردار پشتیبان (SVM)2 و حداکثر احتمال (ML)3 برای طبقه بندی تصاویر ادغام شده استفاده گردید. در مرحله بعد، ترکیب این روش‏ ها با یکدیگر مقایسه شده و بهترین ترکیب دوتایی استخراج گردیده است. در نهایت، روش انتخاب شده در این تحقیق با روش ‏های مرسوم پایش تغییرات مقایسه شد.

نتایج و بحث

پس از مقایسه نتایج مشخص شد که دریاچه مهارلو از سال 2013 تا 2018 بر اساس روش گرام اشمیت - ماشین بردار پشتیبان حدود 3/163 کیلومتر عقب نشینی داشته است. بمنظور ارزیابی صحت نتایج، از صحت کلی و سنجه کاپا استفاده شد. با توجه به نتایج به دست آمده، روش گرام اشمیت - ماشین بردار پشتیبان دارای صحت کلی 33/99 درصد بوده و ضریب کاپای 99/0 را داراست و دارای کمترین خطای نسبی یعنی 92/3 کیلومترمربع می ‏باشد و نسبت به روش‏ های دیگر تغییرات را بهتر نشان می ‏دهد و نتایج آن به واقعیت زمینی نزدیکتر است. در مرحله بعد، سطوح آب با استفاده از روش ‏های مرسوم آشکارسازی تغییرات مانند روش تفاضل تصاویر، نسبت گیری باندی و تفاضل سنجه پوشش گیاهی از تصاویر استخراج شد و با نتایج حاصل از روش گرام اشمیت - ماشین بردار پشتیبان مورد مقایسه قرار گرفت. با توجه به نتایج گرفته شده، روش گرام اشمیت - ماشین بردار پشتیبان نسبت به روش ‏های دیگر دارای صحت کلی و ضریب کاپای بالاتر و در عین حال کمترین خطای نسبی می ‏باشد.

نتیجه گیری

نتایج این تحقیق نشان می دهد که روش گرام- اشمیت برای ادغام تصاویر و ماشین بردار پشتیبان برای طبقه‏ بندی، نتایج مطلوبی در استخراج تغییرات در تصویر داشته است. این روش می‏ تواند به عنوان ابزاری موثر در پایش تغییرات مورد استفاده قرار گیرد، بویژه اینکه، ادغام تصاویر به دلیل بالا بردن قدرت تفکیک تصاویر می ‏تواند در بالا بردن دقت طبقه ‏بندی نیز موثر باشد. 

نوع مقاله:
مقاله پژوهشی/اصیل
زبان:
فارسی
صفحات:
203 -218
لینک کوتاه:
magiran.com/p2108270 
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.