Evaluation of ORYZA2000 model in yield simulation and production productivity of rice under crop managements

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Background and Objectives

Iran is a semi-arid region with an average annual rainfall of 240 mm and 0.57 million hectares paddy fields. The unceasing growth in demand for water in the industrial sector, drinking water and reduction in the amount of water available for agricultural sector has led to a reduction of water usage in rice, which threatens its production. Crops simulation models can be used to carry out various studies such as selection of suitable cultivar and plant, determining the best agricultural management and production capacity of the area. The purpose of this study was to investigate the ORYZA2000 accuracy in simulating grain and biomass yields, and studying water balance and productivity of rice affected by irrigation and planting dates.

Materials and Methods

In order to evaluate the ORYZA2000 model and investigate the productivity of rice production under irrigation management and planting date, a split plot experiment based on a randomized complete block design with three replications was carried out on a local (Hashemi) cultivar in the years of 2016 and 2017 in the Rice Research Institute of Iran, Rasht. Irrigation interval was considered as the main factor at 4 levels including full flooding, 5, 10 and 15 days irrigation intervals, and transplanting date was assigned to subplot at three levels (April 21th, May 11th and May 31th). Evaluation of simulated and observed values of grain yield and biological yield was conducted based on coefficient of determination, T-test, root mean square error (RMSE) and normalized root mean square error (RMSEn). In this research, the water balance equation throughout the growing season was considered which its components included irrigation, rainfall, actual evaporation, actual transpiration, leakage and deep penetration, and changes in the water stored in the root development zone. Irrigation amount was measured for each plot, rainfall was also obtained from Rasht's meteorological station and other components of the water balance equation were calculated using the ORYZA2000 model. Potential evapotranspiration in ORYZA2000 model was calculated using Priestley-Taylor equation. Water productivity was investigated based on the grain yield of rice for transpiration, evapotranspiration, irrigation and total precipitation and irrigation.

Results

The results of this study revealed that normalized root means square error of the grain yield and biological yield were determined 8% and 6%, respectively. Also, the results showed that among water managements, flooding irrigation and 15-day irrigation interval had the highest water productivity regarding transpiration and evapotranspiration, and the amount of input water and irrigation, respectively. Among the planting dates, the planting date of May, 11th had the highest water productivity based on transpiration, evapotranspiration and planting date of April, 21th, had the highest water productivity based on irrigation, and irrigation and rainfall. In these conditions, the planting date of April, 11th and May, 21th, with an average of 136 and 116 millimeters, had the highest and lowest water reserves, respectively. The highest amount of water saving during the two years of experiment was observed in irrigation intervals of 10 and 15 days (145 and 143 mm, respectively) and the lowest was recorded in the flood treatment (92 mm).

Conclusion

By considering paddy and biomass yield of rice, water productivity and water consumption, five days irrigation treatment had the best paddy and biomass yield in April, 21st planting date. This treatment was the best treatment in terms of productivity and rice production, with 9% reduction in water use and 6% reduction in paddy yield of rice. According to the present study, the ORYZA2000 model can be used to support the results of experiments under irrigation management conditions and planting dates.

Language:
Persian
Published:
Water and Soil Conservation, Volume:27 Issue: 1, 2020
Pages:
49 to 69
magiran.com/p2135771  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!