معرفی یک مدل غیر خطی بر اساس هیبرید ماشین های یادگیری به منظور مدل سازی و پیش بینی بارش و مقایسه با روش SDSM (مطالعات موردی: شهرکرد، بارز و یاسوج)

پیام:
چکیده:

در پژوهش حاضر، مدلی هیبریدی بر مبنای روش های غیرخطی شامل رگرسیون تطبیقی چندگانه اسپلاین (MARS)، شبکه عصبی مصنوعی (ANN) و K نزدیکترین همسایه (KNN) به منظور ریز مقیاس نمایی و پیش بینی بارش ایستگاه های شهرکرد، بارز و یاسوج تحت شرایط تغییر اقلیم معرفی شده است. مدل هیبریدی ارایه شده، مانند مدل ریز مقیاس نمایی SDSM، از دو گام طبقه بندی و رگرسیون تشکیل شده است. مدل MARS برای طبقه بندی وقوع بارش و الگوریتم های ANN و KNN برای تعیین مقدار بارش به کار برده شده اند. نتایج مدل MARS برای تعیین وقوع بارش نشان می دهد که مدل مذکور نسبت به مدل SDSM از دقت بیش تری برخوردار است. با مقایسه نتایج ریز مقیاس نمایی مشاهده می شود که الگوریتم ANN نسبت به مدل SDSM و الگوریتم KNN دارای دقت بیش تری در تعیین میانگین سالانه و ماهانه بارش است. به طوری که در ایستگاه شهرکرد مقدار معیار R برای الگوریتم ANN نسبت به مدل SDSM به اندازه 54 درصد دقیق تر است. هم چنین، الگوریتم های ANN، KNN و SDSM از نظر بیش ترین دقت در سه ایستگاه بررسی شده، با در نظر گرفتن میانگین، انحراف معیار و ضریب چولگی ماهانه به ترتیب در رتبه های اول، دوم و سوم قرار داده می شوند. در نهایت، مقدار تغییرات بارش در دوره آینده نزدیک (2020-2040) و آینده دور (2070-2100) تحت سناریو های A2 و B2 مدل HADCM3 بررسی شد. نتایج نشان داد که کم ترین کاهش بارش (2 درصد) مربوط به الگوریتم ANN (در ایستگاه شهرکرد) و سناریوی A2 در دوره آینده نزدیک و بیش ترین آن (54 درصد) مربوط به مدل SDSM (در ایستگاه یاسوج) و سناریوی A2 در دوره آینده دور می باشد. در نهایت می توان نتیجه گرفت که هیبرید ماشین های یادگیری نسبت به مدل SDSM، از دقت بیشتری برخوردار است و می توان از مدل معرفی شده به عنوان جایگزین مدل SDSM استفاده کرد.

نوع مقاله:
مطالعه موردی
زبان:
فارسی
صفحات:
325 -339
لینک کوتاه:
magiran.com/p2139353 
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.