Predicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Message:
Abstract:
Introduction

Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction model of the survival of patients with lung cancer based on patients’ characteristics through data mining approach.

Method

In this applied-descriptive study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm and the Particle Swarm Optimization (PSO) algorithm were applied to predict the survival rate of patients with lung cancer. The Surveillance, Epidemiology and End-Results (SEER) database of Louisville University, USA was also utilized. The evaluation of this proposed model was conducted based on certain criteria including accuracy, precision, error and root-mean-square error.

Results

The obtained finding indicate the outperformance of ANFIS through PSO algorithm vs. its counterparts in this context with a 99.80 accuracy for one-year survival, 99.74% for two-years and 99.66% for five-years on SEER dataset.

Conclusion

Applying ANFIS through PSO in predicting the survival of patients with lung cancer is a strong measure. Compared with other models, this newly proposed model was of the highest accuracy and precision and of the lowest error rate. Therefore, it is suggested to apply this model for predicting survival of patient.

Article Type:
Research/Original Article
Language:
Persian
Published:
Journal of Health and Biomedical Informatics, Volume:7 Issue: 1, 2020
Pages:
19 - 29
magiran.com/p2149252  
برخی از خدمات از جمله دانلود متن مقالات تنها به مشترکان مگیران ارایه می‌گردد. شما می‌توانید به یکی از روش‌های زیر مشترک شوید:
اشتراک شخصی
در سایت عضو شوید و هزینه اشتراک یک‌ساله سایت به مبلغ 400,000ريال را پرداخت کنید. همزمان با برقراری دوره اشتراک بسته دانلود 100 مطلب نیز برای شما فعال خواهد شد!
پرداخت با کارتهای اعتباری بین المللی از طریق PayPal امکانپذیر است.
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی همه کاربران به متن مطالب خریداری نمایند!
توجه!
  • دسترسی به متن مقالات این پایگاه در قالب ارایه خدمات کتابخانه دیجیتال و با دریافت حق عضویت صورت می‌گیرد و مگیران بهایی برای هر مقاله تعیین نکرده و وجهی بابت آن دریافت نمی‌کند.
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.