Immobilization of Lead in contaminated soil by silicon compounds (Case Study of Lead Mine Paji Miana)

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:
Background and objectives

Soil contamination with heavy metals is one of the main important environmental issues. Soils around mines have a high concentration of heavy metals that can affect the health of humans and animals. A cheap method to remediate soils contaminated with heavy metals is the, immobilization of heavy metals in soils. The use of environmentally friendly compounds that have the ability to immobilize of heavy metals in the soil environment has taken attention of many researchers. For this purpose, silicon compounds were used in the study to immobilize lead (Pb) in the contaminated soil.

Materials and methods

In this study, four types of compound such as calcium silicate, potassium silicate, sodium silicate and pure silicon were used at five concentrations (0, 50, 100, 200 and 400 mg / kg soil) in terms of Si content. The Silicon compounds were added to the pots containing 700 grams of Pb contaminated soil, and maintained for one month at ambient temperature and soil water content equivalent to field capacity. The available Pb was then extracted with DTPA and the Pb concentration was measured by atomic absorption. The distribution of chemical forms of Pb was determined before and after of incubation time with sequential extraction method. This experiment was carried out in a factorial arrangement in a completely randomized design with three replications.

Results

The results showed that among the 4 silicon compounds, calcium silicate at a concentration of 400 mg / kg soil had the highest rate (54%) of Pb stabilization. In general, all of four silicon compounds, at the concentration of 400 mg / kg soil, had the most Pb stabilization capability among the all of applied rates. The results of sequential extraction showed that by using silicon compounds in Pb contaminated soil and increasing the concentrations rates from 50 to 400 mg / kg the soluble and exchangeable form, the form attached to carbonates and the iron and manganese oxides reduced but the forms of Pb co-exist with organic matter and the residual form of Pb increased. The highest reduction in the form of exchangeable, carbonate and bounded to iron and manganese oxide, Conversely, the highest increase occurs in the form of residual and was belong to calcium silicate treatment.

Conclusion

In fact, by the increase of silicon compound rates application, more amount of these compounds are available for Pb immobilization. The Silicon can form a complex with heavy metals and thereby reduce the available concentration of them. The Calcium silicate has a higher specific surface area than potassium and sodium silicates, hence, it can initiate more complex with Pb ions. However, Potassium and sodium silicates had a greater ability to stabilize Pb ions than pure silicon. Therefore, pure silicon had less ability to decrease the available Pb concentration among the all treatments. In general, it can be concluded that silicon compounds are able to reduce the mobility of Pb ions in soil environment and these compound environmentally friendly compounds.

Language:
Persian
Published:
Soil Management and Sustainable Production, Volume:10 Issue: 2, 2020
Pages:
125 to 141
magiran.com/p2189756  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
دسترسی سراسری کاربران دانشگاه پیام نور!
اعضای هیئت علمی و دانشجویان دانشگاه پیام نور در سراسر کشور، در صورت ثبت نام با ایمیل دانشگاهی، تا پایان فروردین ماه 1403 به مقالات سایت دسترسی خواهند داشت!
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!